• Title/Summary/Keyword: Image feature extraction

Search Result 1,026, Processing Time 0.029 seconds

Fast and Accurate Rigid Registration of 3D CT Images by Combining Feature and Intensity

  • June, Naw Chit Too;Cui, Xuenan;Li, Shengzhe;Kim, Hak-Il;Kwack, Kyu-Sung
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Computed tomography (CT) images are widely used for the analysis of the temporal evaluation or monitoring of the progression of a disease. The follow-up examinations of CT scan images of the same patient require a 3D registration technique. In this paper, an automatic and robust registration is proposed for the rigid registration of 3D CT images. The proposed method involves two steps. Firstly, the two CT volumes are aligned based on their principal axes, and then, the alignment from the previous step is refined by the optimization of the similarity score of the image's voxel. Normalized cross correlation (NCC) is used as a similarity metric and a downhill simplex method is employed to find out the optimal score. The performance of the algorithm is evaluated on phantom images and knee synthetic CT images. By the extraction of the initial transformation parameters with principal axis of the binary volumes, the searching space to find out the parameters is reduced in the optimization step. Thus, the overall registration time is algorithmically decreased without the deterioration of the accuracy. The preliminary experimental results of the study demonstrate that the proposed method can be applied to rigid registration problems of real patient images.

Land Use Feature Extraction and Sprawl Development Prediction from Quickbird Satellite Imagery Using Dempster-Shafer and Land Transformation Model

  • Saharkhiz, Maryam Adel;Pradhan, Biswajeet;Rizeei, Hossein Mojaddadi;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • Accurate knowledge of land use/land cover (LULC) features and their relative changes over upon the time are essential for sustainable urban management. Urban sprawl growth has been always also a worldwide concern that needs to carefully monitor particularly in a developing country where unplanned building constriction has been expanding at a high rate. Recently, remotely sensed imageries with a very high spatial/spectral resolution and state of the art machine learning approaches sent the urban classification and growth monitoring to a higher level. In this research, we classified the Quickbird satellite imagery by object-based image analysis of Dempster-Shafer (OBIA-DS) for the years of 2002 and 2015 at Karbala-Iraq. The real LULC changes including, residential sprawl expansion, amongst these years, were identified via change detection procedure. In accordance with extracted features of LULC and detected trend of urban pattern, the future LULC dynamic was simulated by using land transformation model (LTM) in geospatial information system (GIS) platform. Both classification and prediction stages were successfully validated using ground control points (GCPs) through accuracy assessment metric of Kappa coefficient that indicated 0.87 and 0.91 for 2002 and 2015 classification as well as 0.79 for prediction part. Detail results revealed a substantial growth in building over fifteen years that mostly replaced by agriculture and orchard field. The prediction scenario of LULC sprawl development for 2030 revealed a substantial decline in green and agriculture land as well as an extensive increment in build-up area especially at the countryside of the city without following the residential pattern standard. The proposed method helps urban decision-makers to identify the detail temporal-spatial growth pattern of highly populated cities like Karbala. Additionally, the results of this study can be considered as a probable future map in order to design enough future social services and amenities for the local inhabitants.

Mobile Phone Camera Based Scene Text Detection Using Edge and Color Quantization (에지 및 컬러 양자화를 이용한 모바일 폰 카메라 기반장면 텍스트 검출)

  • Park, Jong-Cheon;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.847-852
    • /
    • 2010
  • Text in natural images has a various and important feature of image. Therefore, to detect text and extraction of text, recognizing it is a studied as an important research area. Lately, many applications of various fields is being developed based on mobile phone camera technology. Detecting edge component form gray-scale image and detect an boundary of text regions by local standard deviation and get an connected components using Euclidean distance of RGB color space. Labeling the detected edges and connected component and get bounding boxes each regions. Candidate of text achieved with heuristic rule of text. Detected candidate text regions was merged for generation for one candidate text region, then text region detected with verifying candidate text region using ectilarity characterization of adjacency and ectilarity between candidate text regions. Experctental results, We improved text region detection rate using completentary of edge and color connected component.

Design of High-performance Pedestrian and Vehicle Detection Circuit using Haar-like Features (Haar-like 특징을 이용한 고성능 보행자 및 차량 인식 회로 설계)

  • Kim, Soo-Jin;Park, Sang-Kyun;Lee, Seon-Young;Cho, Kyeong-Soon
    • The KIPS Transactions:PartA
    • /
    • v.19A no.4
    • /
    • pp.175-180
    • /
    • 2012
  • This paper describes the design of high-performance pedestrian and vehicle detection circuit using the Haar-like features. The proposed circuit uses a sliding window for every image frame in order to extract Haar-like features and to detect pedestrians and vehicles. A total of 200 Haar-like features per sliding window is extracted from Haar-like feature extraction circuit and the extracted features are provided to AdaBoost classifier circuit. In order to increase the processing speed, the proposed circuit adopts the parallel architecture and it can process two sliding windows at the same time. We described the proposed high-performance pedestrian and vehicle detection circuit using Verilog HDL and synthesized the gate-level circuit using the 130nm standard cell library. The synthesized circuit consists of 1,388,260 gates and its maximum operating frequency is 203MHz. Since the proposed circuit processes about 47.8 $640{\times}480$ image frames per second, it can be used to provide the real-time detection of pedestrians and vehicles.

Face Recognition using Modified Local Directional Pattern Image (Modified Local Directional Pattern 영상을 이용한 얼굴인식)

  • Kim, Dong-Ju;Lee, Sang-Heon;Sohn, Myoung-Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.3
    • /
    • pp.205-208
    • /
    • 2013
  • Generally, binary pattern transforms have been used in the field of the face recognition and facial expression, since they are robust to illumination. Thus, this paper proposes an illumination-robust face recognition system combining an MLDP, which improves the texture component of the LDP, and a 2D-PCA algorithm. Unlike that binary pattern transforms such as LBP and LDP were used to extract histogram features, the proposed method directly uses the MLDP image for feature extraction by 2D-PCA. The performance evaluation of proposed method was carried out using various algorithms such as PCA, 2D-PCA and Gabor wavelets-based LBP on Yale B and CMU-PIE databases which were constructed under varying lighting condition. From the experimental results, we confirmed that the proposed method showed the best recognition accuracy.

Automatic Container Placard Recognition System (컨테이너 플래카드 자동 인식 시스템)

  • Heo, Gyeongyong;Lee, Imgeun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.659-665
    • /
    • 2019
  • Various placards are attached to the surface of a container depending on the risk of the cargo loaded. Containers with dangerous goods should be managed separately from ordinary containers. Therefore, as part of the port automation system, there is a demand for automatic recognition of placards. In this paper, proposed is a system that automatically extracts the placard area based on the shape features of the placard and recognizes the contents in it. Various distortions can be caused by the surface curvature of the container, therefore, attention should be paid to the area extraction and recognition process. The proposed system can automatically extract the region of interest and recognize the placard using the feature that the placard is diamond shaped and the class number is written just above the lower vertex. When the proposed system is applied to real images, the placard can be recognized without error, and the used techniques can be applied to various image analysis systems.

Regional Boundary Operation for Character Recognition Using Skeleton (골격을 이용한 문자 인식을 위한 지역경계 연산)

  • Yoo, Suk Won
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.361-366
    • /
    • 2018
  • For each character constituting learning data, different fonts are added in pixel unit to create MASK, and then pixel values belonging to the MASK are divided into three groups. The experimental data are modified into skeletal forms, and then regional boundary operation is used to create a boundary that distinguishes the background region adjacent to the skeleton of the character from the background of the modified experimental data. Discordance values between the modified experimental data and the MASKs are calculated, and then the MASK with the minimum value is found. This MASK is selected as a finally recognized result for the given experiment data. The recognition algorithm using skeleton of the character and the regional boundary operation can easily extend the learning data set by adding new fonts to the given learning data, and also it is simple to implement, and high character recognition rate can be obtained.

Dynamic RNN-CNN malware classifier correspond with Random Dimension Input Data (임의 차원 데이터 대응 Dynamic RNN-CNN 멀웨어 분류기)

  • Lim, Geun-Young;Cho, Young-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.533-539
    • /
    • 2019
  • This study proposes a malware classification model that can handle arbitrary length input data using the Microsoft Malware Classification Challenge dataset. We are based on imaging existing data from malware. The proposed model generates a lot of images when malware data is large, and generates a small image of small data. The generated image is learned as time series data by Dynamic RNN. The output value of the RNN is classified into malware by using only the highest weighted output by applying the Attention technique, and learning the RNN output value by Residual CNN again. Experiments on the proposed model showed a Micro-average F1 score of 92% in the validation data set. Experimental results show that the performance of a model capable of learning and classifying arbitrary length data can be verified without special feature extraction and dimension reduction.

Deep Learning Based On-Device Augmented Reality System using Multiple Images (다중영상을 이용한 딥러닝 기반 온디바이스 증강현실 시스템)

  • Jeong, Taehyeon;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.341-350
    • /
    • 2022
  • In this paper, we propose a deep learning based on-device augmented reality (AR) system in which multiple input images are used to implement the correct occlusion in a real environment. The proposed system is composed of three technical steps; camera pose estimation, depth estimation, and object augmentation. Each step employs various mobile frameworks to optimize the processing on the on-device environment. Firstly, in the camera pose estimation stage, the massive computation involved in feature extraction is parallelized using OpenCL which is the GPU parallelization framework. Next, in depth estimation, monocular and multiple image-based depth image inference is accelerated using the mobile deep learning framework, i.e. TensorFlow Lite. Finally, object augmentation and occlusion handling are performed on the OpenGL ES mobile graphics framework. The proposed augmented reality system is implemented as an application in the Android environment. We evaluate the performance of the proposed system in terms of augmentation accuracy and the processing time in the mobile as well as PC environments.

Automatic analysis of golf swing from single-camera video sequences (단일 카메라 영상으로부터 골프 스윙의 자동 분석)

  • Kim, Pyeoung-Kee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.5
    • /
    • pp.139-148
    • /
    • 2009
  • In this paper, I propose an automatic analysis method of golf swine from single-camera video sequences. I define necessary swing features for automatic swing analysis in 2-dimensional environment and present efficient swing analysis methods using various image processing techniques including line and edge detection. The proposed method has two characteristics compared with previous swing analysis systems and related studies. First, the proposed method enables an automatic swing analysis in 2-dimension while previous systems require 3-dimensional environment which is relatively complex and expensive to run. Second, swing analysis is done automatically without human intervention while other 2-dimensional systems necessarily need analysis by a golf expert. I tested the method on 20 swing video sequences and found the proposed method works effective for automatic analysis of golf swing.