• Title/Summary/Keyword: Image feature extraction

Search Result 1,026, Processing Time 0.029 seconds

Kidney's feature point extraction based on edge detection using SIFT algorithm in ultrasound image (Edge detection 기반의 SIFT 알고리즘을 이용한 kidney 특징점 검출 방법)

  • Kim, Sung-Jung;Yoo, JaeChern
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.89-90
    • /
    • 2019
  • 본 논문에서는 ultrasound image Right Parasagittal Liver에 edge detection을 적용한 후, 특징점 검출 알고리즘인 Scale Invarient Feature Transfom(SIFT)를 이용하여 특징점의 위치를 살펴보도록 한다. edge detection 알고리즘으로는 Canny edge detection과 Prewitt edge detection을 적용하기로 한다.

  • PDF

Extraction of kidney's feature points by SIFT algorithm in ultrasound image (SIFT 알고리즘으로 kidney 특징점 검출)

  • Kim, Sung-Jung;Yoo, JaeChern
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.313-314
    • /
    • 2019
  • 본 논문에서는 특징점 검출 알고리즘을 적용하여 ultrasound image에서 특징점을 검출하는 것과 object dectection을 위한 keypoints가 object에 올바르게 위치하는지를 검증하는 실험을 진행한다. 특징점 검출을 위한 알고리즘으로는 Scale Invariant Feature Transform(SIFT)과 Harris corner detection 을 적용하여 검증한다.

  • PDF

Feature Extraction for Vision Based Micromanipulation

  • Jang, Min-Soo;Lee, Seok-Joo;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.41.5-41
    • /
    • 2002
  • This paper presents a feature extraction algorithm for vision-based micromanipulation. In order to guarantee of the accurate micromanipulation, most of micromanipulation systems use vision sensor. Vision data from an optical microscope or high magnification lens have vast information, however, characteristics of micro image such as emphasized contour, texture, and noise are make it difficult to apply macro image processing algorithms to micro image. Grasping points extraction is very important task in micromanipulation because inaccurate grasping points can cause breakdown of micro gripper or miss of micro objects. To solve those problems and extract grasping points for micromanipulation...

  • PDF

A Shape Feature Extraction Method for Topographical Image Databases (지형/지물 이미지 데이타베이스를 위한 형태 특징 추출 방법)

  • Kwon Yong-Il;Park Ho-Hyun;Lee Seok-Lyong;Chung Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.33 no.4
    • /
    • pp.384-395
    • /
    • 2006
  • Topographical images such as aerial and satellite images are usually similar with respect to colors and textures but not in shapes. Thus shape features of the images and the methods of extracting them become critical for effective image retrieval from topographical image databases. In this paper, we propose a shape feature extraction method for topographical image retrieval. The method extracts a set of attributes which can model the presence of holes and disconnected regions in images and is tolerant to pre-processing, more specifically segmentation, errors. Various experiments suggest that retrieval using attributes extracted using the proposed method performs better than using existing shape feature extraction methods.

A Comparison of Deep Reinforcement Learning and Deep learning for Complex Image Analysis

  • Khajuria, Rishi;Quyoom, Abdul;Sarwar, Abid
    • Journal of Multimedia Information System
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The image analysis is an important and predominant task for classifying the different parts of the image. The analysis of complex image analysis like histopathological define a crucial factor in oncology due to its ability to help pathologists for interpretation of images and therefore various feature extraction techniques have been evolved from time to time for such analysis. Although deep reinforcement learning is a new and emerging technique but very less effort has been made to compare the deep learning and deep reinforcement learning for image analysis. The paper highlights how both techniques differ in feature extraction from complex images and discusses the potential pros and cons. The use of Convolution Neural Network (CNN) in image segmentation, detection and diagnosis of tumour, feature extraction is important but there are several challenges that need to be overcome before Deep Learning can be applied to digital pathology. The one being is the availability of sufficient training examples for medical image datasets, feature extraction from whole area of the image, ground truth localized annotations, adversarial effects of input representations and extremely large size of the digital pathological slides (in gigabytes).Even though formulating Histopathological Image Analysis (HIA) as Multi Instance Learning (MIL) problem is a remarkable step where histopathological image is divided into high resolution patches to make predictions for the patch and then combining them for overall slide predictions but it suffers from loss of contextual and spatial information. In such cases the deep reinforcement learning techniques can be used to learn feature from the limited data without losing contextual and spatial information.

A Novel Model for Smart Breast Cancer Detection in Thermogram Images

  • Kazerouni, Iman Abaspur;Zadeh, Hossein Ghayoumi;Haddadnia, Javad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10573-10576
    • /
    • 2015
  • Background: Accuracy in feature extraction is an important factor in image classification and retrieval. In this paper, a breast tissue density classification and image retrieval model is introduced for breast cancer detection based on thermographic images. The new method of thermographic image analysis for automated detection of high tumor risk areas, based on two-directional two-dimensional principal component analysis technique for feature extraction, and a support vector machine for thermographic image retrieval was tested on 400 images. The sensitivity and specificity of the model are 100% and 98%, respectively.

Face Image Compression Algorithm using Triangular Feature Extraction and GHA (삼각특징추출과 GHA를 이용한 얼굴영상 압축알고리즘)

  • Seo, Seok-Bae;Kim, Dae-Jin;Gang, Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.1
    • /
    • pp.11-18
    • /
    • 2001
  • In this paper, we proposed the image compression algorithm using triangular feature based GHA. In feature extraction, the input images are divided into eight areas of triangular shape, that has positional information for face image compression. The proposed algorithm reduces blocking effects in image reconstruction and contains informations of face feature and shapes of face as input images are divided into eight. We used triangular feature extraction for positional information and GHA for shape information of face images. Simulation results show that the proposed algorithm has a better performance than the block based K-means and non-parsed image based GHA in PSNR at the same bpp.

  • PDF

Framework for Content-Based Image Identification with Standardized Multiview Features

  • Das, Rik;Thepade, Sudeep;Ghosh, Saurav
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.174-184
    • /
    • 2016
  • Information identification with image data by means of low-level visual features has evolved as a challenging research domain. Conventional text-based mapping of image data has been gradually replaced by content-based techniques of image identification. Feature extraction from image content plays a crucial role in facilitating content-based detection processes. In this paper, the authors have proposed four different techniques for multiview feature extraction from images. The efficiency of extracted feature vectors for content-based image classification and retrieval is evaluated by means of fusion-based and data standardization-based techniques. It is observed that the latter surpasses the former. The proposed methods outclass state-of-the-art techniques for content-based image identification and show an average increase in precision of 17.71% and 22.78% for classification and retrieval, respectively. Three public datasets - Wang; Oliva and Torralba (OT-Scene); and Corel - are used for verification purposes. The research findings are statistically validated by conducting a paired t-test.

FIGURE ALPHABET HYPOTHESIS INSPIRED NEURAL NETWORK RECOGNITION MODEL

  • Ohira, Ryoji;Saiki, Kenji;Nagao, Tomoharu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.547-550
    • /
    • 2009
  • The object recognition mechanism of human being is not well understood yet. On research of animal experiment using an ape, however, neurons that respond to simple shape (e.g. circle, triangle, square and so on) were found. And Hypothesis has been set up as human being may recognize object as combination of such simple shapes. That mechanism is called Figure Alphabet Hypothesis, and those simple shapes are called Figure Alphabet. As one way to research object recognition algorithm, we focused attention to this Figure Alphabet Hypothesis. Getting idea from it, we proposed the feature extraction algorithm for object recognition. In this paper, we described recognition of binarized images of multifont alphabet characters by the recognition model which combined three-layered neural network in the feature extraction algorithm. First of all, we calculated the difference between the learning image data set and the template by the feature extraction algorithm. The computed finite difference is a feature quantity of the feature extraction algorithm. We had it input the feature quantity to the neural network model and learn by backpropagation (BP method). We had the recognition model recognize the unknown image data set and found the correct answer rate. To estimate the performance of the contriving recognition model, we had the unknown image data set recognized by a conventional neural network. As a result, the contriving recognition model showed a higher correct answer rate than a conventional neural network model. Therefore the validity of the contriving recognition model could be proved. We'll plan the research a recognition of natural image by the contriving recognition model in the future.

  • PDF

AUTOMATIC SELECTION AND ADJUSTMENT OF FEATURES FOR IMAGE CLASSIFICATION

  • Saiki, Kenji;Nagao, Tomoharu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.525-528
    • /
    • 2009
  • Recently, image classification has been an important task in various fields. Generally, the performance of image classification is not good without the adjustment of image features. Therefore, it is desired that the way of automatic feature extraction. In this paper, we propose an image classification method which adjusts image features automatically. We assume that texture features are useful in image classification tasks because natural images are composed of several types of texture. Thus, the classification accuracy rate is improved by using distribution of texture features. We obtain texture features by calculating image features from a current considering pixel and its neighborhood pixels. And we calculate image features from distribution of textures feature. Those image features are adjusted to image classification tasks using Genetic Algorithm. We apply proposed method to classifying images into "head" or "non-head" and "male" or "female".

  • PDF