• Title/Summary/Keyword: Image feature extraction

Search Result 1,026, Processing Time 0.027 seconds

Development of surface defect inspection algorithms for cold mill strip using tree structure (트리 구조를 이용한 냉연 표면흠 검사 알고리듬 개발에 관한 연구)

  • Kim, Kyung-Min;Jung, Woo-Yong;Lee, Byung-Jin;Ryu, Gyung;Park, Gui-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.365-370
    • /
    • 1997
  • In this paper we suggest a development of surface defect inspection algorithms for cold mill strip using tree structure. The defects which exist in a surface of cold mill strip have a scattering or singular distribution. This paper consists of preprocessing, feature extraction and defect classification. By preprocessing, the binarized defect image is achieved. In this procedure, Top-hit transform, adaptive thresholding, thinning and noise rejection are used. Especially, Top-hit transform using local min/max operation diminishes the effect of bad lighting. In feature extraction, geometric, moment, co-occurrence matrix, histogram-ratio features are calculated. The histogram-ratio feature is taken from the gray-level image. For the defect classification, we suggest a tree structure of which nodes are multilayer neural network clasifiers. The proposed algorithm reduced error rate comparing to one stage structure.

  • PDF

Homogeneous and Non-homogeneous Polynomial Based Eigenspaces to Extract the Features on Facial Images

  • Muntasa, Arif
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.591-611
    • /
    • 2016
  • High dimensional space is the biggest problem when classification process is carried out, because it takes longer time for computation, so that the costs involved are also expensive. In this research, the facial space generated from homogeneous and non-homogeneous polynomial was proposed to extract the facial image features. The homogeneous and non-homogeneous polynomial-based eigenspaces are the second opinion of the feature extraction of an appearance method to solve non-linear features. The kernel trick has been used to complete the matrix computation on the homogeneous and non-homogeneous polynomial. The weight and projection of the new feature space of the proposed method have been evaluated by using the three face image databases, i.e., the YALE, the ORL, and the UoB. The experimental results have produced the highest recognition rate 94.44%, 97.5%, and 94% for the YALE, ORL, and UoB, respectively. The results explain that the proposed method has produced the higher recognition than the other methods, such as the Eigenface, Fisherface, Laplacianfaces, and O-Laplacianfaces.

Development of Feature Extraction Algorithm for Finger Vein Recognition (지정맥 인식을 위한 특징 검출 알고리즘 개발)

  • Kim, Taehoon;Lee, Sangjoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.9
    • /
    • pp.345-350
    • /
    • 2018
  • This study is an algorithm for detecting vein pattern features important for finger vein recognition. The feature detection algorithm is important because it greatly affects recognition results in pattern recognition. The recognition rate is degraded because the reference is changed according to the finger position change. In addition, the image obtained by irradiating the finger with infrared light is difficult to separate the image background and the blood vessel pattern, and the detection time is increased because the image preprocessing process is performed. For this purpose, the presented algorithm can be performed without image preprocessing, and the detection time can be reduced. SWDA (Down Slope Trace Waveform) algorithm is applied to the finger vein images to detect the fingertip position and vein pattern. Because of the low infrared transmittance, relatively dark vein images can be detected with minimal detection error. In addition, the fingertip position can be used as a reference in the classification stage to compensate the decrease in the recognition rate. If we apply algorithms proposed to various recognition fields such as palm and wrist, it is expected that it will contribute to improvement of biometric feature detection accuracy and reduction of recognition performance time.

Single Image Super Resolution using Multi Grouped Block with Adaptive Weighted Residual Blocks (적응형 가중치 잔차 블록을 적용한 다중 블록 구조 기반의 단일 영상 초해상도 기법)

  • Hyun Ho Han
    • Journal of Digital Policy
    • /
    • v.3 no.3
    • /
    • pp.9-14
    • /
    • 2024
  • In this paper, proposes a method using a multi block structure composed of residual blocks with adaptive weights to improve the quality of results in single image super resolution. In the process of generating super resolution images using deep learning, the most critical factor for enhancing quality is feature extraction and application. While extracting various features is essential for restoring fine details that have been lost due to low resolution, issues such as increased network depth and complexity pose challenges in practical implementation. Therefore, the feature extraction process was structured efficiently, and the application process was improved to enhance quality. To achieve this, a multi block structure was designed after the initial feature extraction, with nested residual blocks inside each block, where adaptive weights were applied. Additionally, for final high resolution reconstruction, a multi kernel image reconstruction process was employed, further improving the quality of the results. The performance of the proposed method was evaluated by calculating PSNR and SSIM values compared to the original image, and its superiority was demonstrated through comparisons with existing algorithms.

Video Segmentation and Key frame Extraction using Multi-resolution Analysis and Statistical Characteristic

  • Cho, Wan-Hyun;Park, Soon-Young;Park, Jong-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.457-469
    • /
    • 2003
  • In this paper, we have proposed the efficient algorithm that can segment the video scene change using a various statistical characteristics obtained from by applying the wavelet transformation for each frames. Our method firstly extracts the histogram features from low frequency subband of wavelet-transformed image and then uses these features to detect the abrupt scene change. Second, it extracts the edge information from applying the mesh method to the high frequency subband of transformed image. We quantify the extracted edge information as the values of variance characteristic of each pixel and use these values to detect the gradual scene change. And we have also proposed an algorithm how extract the proper key frame from segmented video scene. Experiment results show that the proposed method is both very efficient algorithm in segmenting video frames and also is to become the appropriate key frame extraction method.

A Fast and Adaptive Feature Extraction Method for Textured Image Segmentation (Texture 영상 분할을 위한 고속 적응 특징 추출 방법)

  • 이정환;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.12
    • /
    • pp.1249-1265
    • /
    • 1991
  • In this paper, a fast and adaptive feature extraction algorithm for textured image segmentation is proposed. First, a conventional algorithm to extract the statistical texture features are described and we obtain the recursive equations from that conventional method and it is used for extraction of sevaral texture features. And also we propose the adaptive algorithm which extract the texture features. To evaluate the performance of proposed algorithm, we apply the proposed method to artificial texture images. From the results of computer simulation, the proposed method is superior to the conventional one.

  • PDF

GAN-based Color Palette Extraction System by Chroma Fine-tuning with Reinforcement Learning

  • Kim, Sanghyuk;Kang, Suk-Ju
    • Journal of Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.125-129
    • /
    • 2021
  • As the interest of deep learning, techniques to control the color of images in image processing field are evolving together. However, there is no clear standard for color, and it is not easy to find a way to represent only the color itself like the color-palette. In this paper, we propose a novel color palette extraction system by chroma fine-tuning with reinforcement learning. It helps to recognize the color combination to represent an input image. First, we use RGBY images to create feature maps by transferring the backbone network with well-trained model-weight which is verified at super resolution convolutional neural networks. Second, feature maps are trained to 3 fully connected layers for the color-palette generation with a generative adversarial network (GAN). Third, we use the reinforcement learning method which only changes chroma information of the GAN-output by slightly moving each Y component of YCbCr color gamut of pixel values up and down. The proposed method outperforms existing color palette extraction methods as given the accuracy of 0.9140.

A Study on Efficient Feature-Vector Extraction for Content-Based Image Retrieval System (내용 기반 영상 검색 시스템을 위한 효율적인 특징 벡터 추출에 관한 연구)

  • Yoo Gi-Hyoung;Kwak Hoon-Sung
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.309-314
    • /
    • 2006
  • Recently, multimedia DBMS is appeared to be the core technology of the information society to store, manage and retrieve multimedia data efficiently. In this paper, we propose a new method for content based-retrieval system using wavelet transform, energy value to extract automatically feature vector from image data, and suggest an effective retrieval technique through this method. Wavelet transform is widely used in image compression and digital signal analysis, and its coefficient values reflect image feature very well. The correlation in wavelet domain between query image data and the stored data in database is used to calculate similarity. In order to assess the image retrieval performance, a set of hundreds images are run. The method using standard derivation and mean value used for feature vector extraction are compared with that of our method based on energy value. For the simulation results, our energy value method was more effective than the one using standard derivation and mean value.

Image Identifier based on Local Feature's Histogram and Acceleration Technique using GPU (지역 특징 히스토그램 기반 영상식별자와 GPU 가속화)

  • Jeon, Hyeok-June;Seo, Yong-Seok;Hwang, Chi-Jung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.9
    • /
    • pp.889-897
    • /
    • 2010
  • Recently, a cutting-edge large-scale image database system has demanded these attributes: search with alarming speed, performs with high accuracy, archives efficiently and much more. An image identifier (descriptor) is for measuring the similarity of two images which plays an important role in this system. The extraction method of an image identifier can be roughly classified into two methods: a local and global method. In this paper, the proposed image identifier, LFH(Local Feature's Histogram), is obtained by a histogram of robust and distinctive local descriptors (features) constrained by a district sub-division of a local region. Furthermore, LFH has not only the properties of a local and global descriptor, but also can perform calculations at a magnificent clip to determine distance with pinpoint accuracy. Additionally, we suggested a way to extract LFH via GPU (OpenGL and GLSL). In this experiment, we have compared the LFH with SIFT (local method) and EHD (global method) via storage capacity, extraction and retrieval time along with accuracy.

Modified East labeling Algorithm for the Surface Defect Inspection of Cold Mill Strip (냉연 강판의 표면 흠 검사를 위한 수정된 고속 라벨링 알고리듬)

  • Kim, Kyoung-Min;Park, Joong-Jo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1156-1161
    • /
    • 2006
  • This paper describes a fast image labeling algorithm for the feature extraction of connected components. Labeling the connected regions of a digitized image is a fundamental computation in image analysis and machine vision, with a large number of application that can be found in various literature. This algorithm is designed for the surface defect inspection of Cold Mill Strip. The labeling algorithm permits to separate all of the connected components appearing on the Cold Mill Strip.