• Title/Summary/Keyword: Image feature extraction

Search Result 1,026, Processing Time 0.032 seconds

A Study on Recognition of Moving Object Crowdedness Based on Ensemble Classifiers in a Sequence (혼합분류기 기반 영상내 움직이는 객체의 혼잡도 인식에 관한 연구)

  • An, Tae-Ki;Ahn, Seong-Je;Park, Kwang-Young;Park, Goo-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2A
    • /
    • pp.95-104
    • /
    • 2012
  • Pattern recognition using ensemble classifiers is composed of strong classifier which consists of many weak classifiers. In this paper, we used feature extraction to organize strong classifier using static camera sequence. The strong classifier is made of weak classifiers which considers environmental factors. So the strong classifier overcomes environmental effect. Proposed method uses binary foreground image by frame difference method and the boosting is used to train crowdedness model and recognize crowdedness using features. Combination of weak classifiers makes strong ensemble classifier. The classifier could make use of potential features from the environment such as shadow and reflection. We tested the proposed system with road sequence and subway platform sequence which are included in "AVSS 2007" sequence. The result shows good accuracy and efficiency on complex environment.

Steganalysis of Content-Adaptive Steganography using Markov Features for DCT Coefficients (DCT 계수의 마코프 특징을 이용한 내용 적응적 스테가노그래피의 스테그분석)

  • Park, Tae Hee;Han, Jong Goo;Eom, Il Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.97-105
    • /
    • 2015
  • Content-adaptive steganography methods embed secret messages in hard-to-model regions of covers such as complicated texture or noisy area. Content-adaptive steganalysis methods often need high dimensional features to capture more subtle relationships of local dependencies among adjacent pixels. However, these methods require many computational complexity and depend on the location of hidden message and the exploited distortion metrics. In this paper, we propose an improved steganalysis method for content-adaptive steganography to enhance detection rate with small number features. We first show that the features form the difference between DCT coefficients are useful for analyzing the content-adaptive steganography methods, and present feature extraction mehtod using first-order Markov probability for the the difference between DCT coefficients. The extracted features are used as input of ensemble classifier. Experimental results show that the proposed method outperforms previous schemes in terms of detection rates and accuracy in spite of a small number features in various content-adaptive stego images.

A semi-automated method for integrating textural and material data into as-built BIM using TIS

  • Zabin, Asem;Khalil, Baha;Ali, Tarig;Abdalla, Jamal A.;Elaksher, Ahmed
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.127-146
    • /
    • 2020
  • Building Information Modeling (BIM) is increasingly used throughout the facility's life cycle for various applications, such as design, construction, facility management, and maintenance. For existing buildings, the geometry of as-built BIM is often constructed using dense, three dimensional (3D) point clouds data obtained with laser scanners. Traditionally, as-built BIM systems do not contain the material and textural information of the buildings' elements. This paper presents a semi-automatic method for generation of material and texture rich as-built BIM. The method captures and integrates material and textural information of building elements into as-built BIM using thermal infrared sensing (TIS). The proposed method uses TIS to capture thermal images of the interior walls of an existing building. These images are then processed to extract the interior walls using a segmentation algorithm. The digital numbers in the resulted images are then transformed into radiance values that represent the emitted thermal infrared radiation. Machine learning techniques are then applied to build a correlation between the radiance values and the material type in each image. The radiance values were used to extract textural information from the images. The extracted textural and material information are then robustly integrated into the as-built BIM providing the data needed for the assessment of building conditions in general including energy efficiency, among others.

A Bone Age Assessment Method Based on Normalized Shape Model (정규화된 형상 모델을 이용한 뼈 나이 측정 방법)

  • Yoo, Ju-Woan;Lee, Jong-Min;Kim, Whoi-Yul
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.3
    • /
    • pp.383-396
    • /
    • 2009
  • Bone age assessment has been widely used in pediatrics to identify endocrine problems of children. Since the number of trained doctors is far less than the demands, there has been numerous requests for automatic estimation of bone age. Therefore, in this paper, we propose an automatic bone age assessment method that utilizes pattern classification techniques. The proposed method consists of three modules; a finger segmentation module, a normalized shape model generation module and a bone age estimation module. The finger segmentation module segments fingers and epiphyseal regions by means of various image processing algorithms. The shape model abstraction module employ ASM to improves the accuracy of feature extraction for bone age estimation. In addition, SVM is used for estimation of bone age. Features for the estimation include the length of bone and the ratios of bone length. We evaluated the performance of the proposed method through statistical analysis by comparing the bone age assessment results by clinical experts and the proposed automatic method. Through the experimental results, the mean error of the assessment was 0.679 year, which was better than the average error acceptable in clinical practice.

  • PDF

Multimodality Image Registration and Fusion using Feature Extraction (특징 추출을 이용한 다중 영상 정합 및 융합 연구)

  • Woo, Sang-Keun;Kim, Jee-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.123-130
    • /
    • 2007
  • The aim of this study was to propose a fusion and registration method with heterogeneous small animal acquisition system in small animal in-vivo study. After an intravenous injection of $^{18}F$-FDG through tail vain and 60 min delay for uptake, mouse was placed on an acryl plate with fiducial markers that were made for fusion between small animal PET (microPET R4, Concorde Microsystems, Knoxville TN) and Discovery LS CT images. The acquired emission list-mode data was sorted to temporally framed sinograms and reconstructed using FORE rebining and 2D-OSEM algorithms without correction of attenuation and scatter. After PET imaging, CT images were acquired by mean of a clinical PET/CT with high-resolution mode. The microPET and CT images were fusion and co-registered using the fiducial markers and segmented lung region in both data sets to perform a point-based rigid co-registration. This method improves the quantitative accuracy and interpretation of the tracer.

  • PDF

HyperConv: spatio-spectral classication of hyperspectral images with deep convolutional neural networks (심층 컨볼루션 신경망을 사용한 초분광 영상의 공간 분광학적 분류 기법)

  • Ko, Seyoon;Jun, Goo;Won, Joong-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.859-872
    • /
    • 2016
  • Land cover classification is an important tool for preventing natural disasters, collecting environmental information, and monitoring natural resources. Hyperspectral imaging is widely used for this task thanks to sufficient spectral information. However, the curse of dimensionality, spatiotemporal variability, and lack of labeled data make it difficult to classify the land cover correctly. We propose a novel classification framework for land cover classification of hyperspectral data based on convolutional neural networks. The proposed framework naturally incorporates full spectral features with the information from neighboring pixels and has advantages over existing methods that require additional feature extraction or pre-processing steps. Empirical evaluation results show that the proposed framework provides good generalization power with classification accuracies better than (or comparable to) the most advanced existing classifiers.

Lip Reading Method Using CNN for Utterance Period Detection (발화구간 검출을 위해 학습된 CNN 기반 입 모양 인식 방법)

  • Kim, Yong-Ki;Lim, Jong Gwan;Kim, Mi-Hye
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.233-243
    • /
    • 2016
  • Due to speech recognition problems in noisy environment, Audio Visual Speech Recognition (AVSR) system, which combines speech information and visual information, has been proposed since the mid-1990s,. and lip reading have played significant role in the AVSR System. This study aims to enhance recognition rate of utterance word using only lip shape detection for efficient AVSR system. After preprocessing for lip region detection, Convolution Neural Network (CNN) techniques are applied for utterance period detection and lip shape feature vector extraction, and Hidden Markov Models (HMMs) are then used for the recognition. As a result, the utterance period detection results show 91% of success rates, which are higher performance than general threshold methods. In the lip reading recognition, while user-dependent experiment records 88.5%, user-independent experiment shows 80.2% of recognition rates, which are improved results compared to the previous studies.

Text Detection and Recognition in Outdoor Korean Signboards for Mobile System Applications (모바일 시스템 응용을 위한 실외 한국어 간판 영상에서 텍스트 검출 및 인식)

  • Park, J.H.;Lee, G.S.;Kim, S.H.;Lee, M.H.;Toan, N.D.
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.44-51
    • /
    • 2009
  • Text understand in natural images has become an active research field in the past few decades. In this paper, we present an automatic recognition system in Korean signboards with a complex background. The proposed algorithm includes detection, binarization and extraction of text for the recognition of shop names. First, we utilize an elaborate detection algorithm to detect possible text region based on edge histogram of vertical and horizontal direction. And detected text region is segmented by clustering method. Second, the text is divided into individual characters based on connected components whose center of mass lie below the center line, which are recognized by using a minimum distance classifier. A shape-based statistical feature is adopted, which is adequate for Korean character recognition. The system has been implemented in a mobile phone and is demonstrated to show acceptable performance.

A Resampling Method for Small Sample Size Problems in Face Recognition using LDA (LDA를 이용한 얼굴인식에서의 Small Sample Size문제 해결을 위한 Resampling 방법)

  • Oh, Jae-Hyun;Kwak, Jo-Jun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.78-88
    • /
    • 2009
  • In many face recognition problems, the number of available images is limited compared to the dimension of the input space which is usually equal to the number of pixels. This problem is called as the 'small sample size' problem and regularization methods are typically used to solve this problem in feature extraction methods such as LDA. By using regularization methods, the modified within class matrix becomes nonsingu1ar and LDA can be performed in its original form. However, in the process of adding a scaled version of the identity matrix to the original within scatter matrix, the scale factor should be set heuristically and the performance of the recognition system depends on highly the value of the scalar factor. By using the proposed resampling method, we can generate a set of images similar to but slightly different from the original image. With the increased number of images, the small sample size problem is alleviated and the classification performance increases. Unlike regularization method, the resampling method does not suffer from the heuristic setting of the parameter producing better performance.

Measure of similarity by toll theory and matching using fuzzy relation matrix - focused on 3-dimensional images (톨이론에 의한 유사도 계산과 퍼지 관계 행렬을 이용한 정합과정의 수행 - 3차원 영상을 중심으로)

  • 조동욱;한길성;조용환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1698-1706
    • /
    • 1997
  • In this paper, we envisioned a multimedia object recognition system processing and combinig information from all available sources, such as 2-D, 3-D, color and sound data. Out of the overall system, we proposed 3-D information extraction and object recognition methods. Firstly, surfaces are classified by z-gradient from the range data, surface features are extracted using the intersection of normal vectors. Also feature relationship such as intersection angle and distance is established between the surfaces. Secondly, recognition is accomplished by matching process which is improtant step in the image understanding systems. Matching process is very improtant procedures because of more general and more efficient method is needed in the field of multimedia sytem. Therefore, we focused the proposal of matching process and in this article, first of all, we deal with the matching process of the 3-D object. Similarity measures are calculated.

  • PDF