• Title/Summary/Keyword: Image deep learning

검색결과 1,806건 처리시간 0.04초

A Survey on Deep Convolutional Neural Networks for Image Steganography and Steganalysis

  • Hussain, Israr;Zeng, Jishen;Qin, Xinhong;Tan, Shunquan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권3호
    • /
    • pp.1228-1248
    • /
    • 2020
  • Steganalysis & steganography have witnessed immense progress over the past few years by the advancement of deep convolutional neural networks (DCNN). In this paper, we analyzed current research states from the latest image steganography and steganalysis frameworks based on deep learning. Our objective is to provide for future researchers the work being done on deep learning-based image steganography & steganalysis and highlights the strengths and weakness of existing up-to-date techniques. The result of this study opens new approaches for upcoming research and may serve as source of hypothesis for further significant research on deep learning-based image steganography and steganalysis. Finally, technical challenges of current methods and several promising directions on deep learning steganography and steganalysis are suggested to illustrate how these challenges can be transferred into prolific future research avenues.

Deep Learning in Genomic and Medical Image Data Analysis: Challenges and Approaches

  • Yu, Ning;Yu, Zeng;Gu, Feng;Li, Tianrui;Tian, Xinmin;Pan, Yi
    • Journal of Information Processing Systems
    • /
    • 제13권2호
    • /
    • pp.204-214
    • /
    • 2017
  • Artificial intelligence, especially deep learning technology, is penetrating the majority of research areas, including the field of bioinformatics. However, deep learning has some limitations, such as the complexity of parameter tuning, architecture design, and so forth. In this study, we analyze these issues and challenges in regards to its applications in bioinformatics, particularly genomic analysis and medical image analytics, and give the corresponding approaches and solutions. Although these solutions are mostly rule of thumb, they can effectively handle the issues connected to training learning machines. As such, we explore the tendency of deep learning technology by examining several directions, such as automation, scalability, individuality, mobility, integration, and intelligence warehousing.

Automatic Detection of Work Distraction with Deep Learning Technique for Remote Management of Telecommuting

  • Lee, Wan Yeon
    • International journal of advanced smart convergence
    • /
    • 제10권1호
    • /
    • pp.82-88
    • /
    • 2021
  • In this paper, we propose an automatic detection scheme of work distraction for remote management of telecommuting. The proposed scheme periodically captures two consequent computer screens and generates the difference image of these two captured images. The scheme applies the difference image to our deep learning model and makes a decision of abnormal patterns in the difference image. Our deep learning model is designed with the transfer learning technique of VGG16 deep learning. When the scheme detects an abnormal pattern in the difference image, it hides all texts in the difference images to protect disclosure of privacy-related information. Evaluation shows that the proposed scheme provides about 96% detection accuracy.

딥러닝을 이용한 나노소재 투과전자 현미경의 초해상 이미지 획득 (Super-Resolution Transmission Electron Microscope Image of Nanomaterials Using Deep Learning)

  • 남충희
    • 한국재료학회지
    • /
    • 제32권8호
    • /
    • pp.345-353
    • /
    • 2022
  • In this study, using deep learning, super-resolution images of transmission electron microscope (TEM) images were generated for nanomaterial analysis. 1169 paired images with 256 × 256 pixels (high resolution: HR) from TEM measurements and 32 × 32 pixels (low resolution: LR) produced using the python module openCV were trained with deep learning models. The TEM images were related to DyVO4 nanomaterials synthesized by hydrothermal methods. Mean-absolute-error (MAE), peak-signal-to-noise-ratio (PSNR), and structural similarity (SSIM) were used as metrics to evaluate the performance of the models. First, a super-resolution image (SR) was obtained using the traditional interpolation method used in computer vision. In the SR image at low magnification, the shape of the nanomaterial improved. However, the SR images at medium and high magnification failed to show the characteristics of the lattice of the nanomaterials. Second, to obtain a SR image, the deep learning model includes a residual network which reduces the loss of spatial information in the convolutional process of obtaining a feature map. In the process of optimizing the deep learning model, it was confirmed that the performance of the model improved as the number of data increased. In addition, by optimizing the deep learning model using the loss function, including MAE and SSIM at the same time, improved results of the nanomaterial lattice in SR images were achieved at medium and high magnifications. The final proposed deep learning model used four residual blocks to obtain the characteristic map of the low-resolution image, and the super-resolution image was completed using Upsampling2D and the residual block three times.

이미지 분류를 위한 딥러닝 기반 CNN모델 전이 학습 비교 분석 (CNN model transition learning comparative analysis based on deep learning for image classification)

  • 이동준;전승제;이동휘
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.370-373
    • /
    • 2022
  • 최근 Tensorflow나 Pytorch, Keras 같은 여러가지의 딥러닝 프레임워크 모델들이 나왔다. 또한 이미지 인식에 Tensorflow, Pytorch, Keras 같은 프레임 워크를 이용하여 CNN(Convolutional Neural Network)을 적용시켜 이미지 분류에서의 최적화 모델을 주로 이용한다. 본 논문에서는 딥러닝 이미지 인식분야에서 가장 많이 사용하고 있는 파이토치와 텐서플로우의 프레임 워크를 CNN모델에 학습을 시킨 결과를 토대로 두 프레임 워크를 비교 분석하여 이미지 분석할 때 최적화 된 프레임워크를 도출하였다.

  • PDF

Deep-Learning-Based Molecular Imaging Biomarkers: Toward Data-Driven Theranostics

  • Choi, Hongyoon
    • 한국의학물리학회지:의학물리
    • /
    • 제30권2호
    • /
    • pp.39-48
    • /
    • 2019
  • Deep learning has been applied to various medical data. In particular, current deep learning models exhibit remarkable performance at specific tasks, sometimes offering higher accuracy than that of experts for discriminating specific diseases from medical images. The current status of deep learning applications to molecular imaging can be divided into a few subtypes in terms of their purposes: differential diagnostic classification, enhancement of image acquisition, and image-based quantification. As functional and pathophysiologic information is key to molecular imaging, this review will emphasize the need for accurate biomarker acquisition by deep learning in molecular imaging. Furthermore, this review addresses practical issues that include clinical validation, data distribution, labeling issues, and harmonization to achieve clinically feasible deep learning models. Eventually, deep learning will enhance the role of theranostics, which aims at precision targeting of pathophysiology by maximizing molecular imaging functional information.

불꽃 감지를 위한 임베디드 시스템에 적합한 딥러닝 구조 (Deep Learning Structure Suitable for Embedded System for Flame Detection)

  • 라승탁;이승호
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.112-119
    • /
    • 2019
  • 본 논문에서는 불꽃 감지를 위한 임베디드 시스템에 적합한 딥러닝 구조를 제안한다. 제안하는 딥러닝 구조의 불꽃 감지 과정은 불꽃 색깔 모델을 사용한 불꽃 영역 검출, 불꽃 색깔 특화 딥러닝 구조를 사용한 불꽃 영상 분류, 검출된 불꽃 영역의 $N{\times}N$ 셀 분리, 불꽃 모양 특화 딥러닝 구조를 사용한 불꽃 영상 분류 등의 4가지 과정으로 구성된다. 첫 번째로 입력 영상에서 불꽃의 색만을 추출한 다음 레이블링하여 불꽃 영역을 검출한다. 두 번째로 검출된 불꽃 영역을 불꽃 색깔에 특화 학습된 딥러닝 구조의 입력으로 넣고, 출력단의 불꽃 클래스 확률이 75% 이상에서만 불꽃 영상으로 분류한다. 세 번째로 앞 단에서 75% 미만 불꽃 영상으로 분류된 영상들의 검출된 불꽃 영역을 $N{\times}N$ 단위로 분할한다. 네 번째로 $N{\times}N$ 단위로 분할된 작은 셀들을 불꽃의 모양에 특화 학습된 딥러닝 구조의 입력으로 넣고, 각 셀의 불꽃 여부를 판단하여 50% 이상의 셀들이 불꽃 영상으로 분류될 경우에 불꽃 영상으로 분류한다. 제안된 딥러닝 구조의 성능을 평가하기 위하여 ImageNet의 불꽃 데이터베이스를 사용하여 실험하였다. 실험 결과, 제안하는 딥러닝 구조는 기존의 딥러닝 구조보다 평균 29.86% 낮은 리소스 점유율과 8초 빠른 불꽃 감지 시간을 나타내었다. 불꽃 검출률은 기존의 딥러닝 구조와 비교하여 평균 0.95% 낮은 결과를 나타내었으나, 이는 임베디드 시스템에 적용하기 위해 딥러닝 구조를 가볍게 구성한데서 나온 결과이다. 따라서 본 논문에서 제안하는 불꽃 감지를 위한 딥러닝 구조는 임베디드 시스템 적용에 적합함이 입증되었다.

Research on Equal-resolution Image Hiding Encryption Based on Image Steganography and Computational Ghost Imaging

  • Leihong Zhang;Yiqiang Zhang;Runchu Xu;Yangjun Li;Dawei Zhang
    • Current Optics and Photonics
    • /
    • 제8권3호
    • /
    • pp.270-281
    • /
    • 2024
  • Information-hiding technology is introduced into an optical ghost imaging encryption scheme, which can greatly improve the security of the encryption scheme. However, in the current mainstream research on camouflage ghost imaging encryption, information hiding techniques such as digital watermarking can only hide 1/4 resolution information of a cover image, and most secret images are simple binary images. In this paper, we propose an equal-resolution image-hiding encryption scheme based on deep learning and computational ghost imaging. With the equal-resolution image steganography network based on deep learning (ERIS-Net), we can realize the hiding and extraction of equal-resolution natural images and increase the amount of encrypted information from 25% to 100% when transmitting the same size of secret data. To the best of our knowledge, this paper combines image steganography based on deep learning with optical ghost imaging encryption method for the first time. With deep learning experiments and simulation, the feasibility, security, robustness, and high encryption capacity of this scheme are verified, and a new idea for optical ghost imaging encryption is proposed.

적록색맹 모사 영상 데이터를 이용한 딥러닝 기반의 위장군인 객체 인식 성능 향상 (Performance Improvement of a Deep Learning-based Object Recognition using Imitated Red-green Color Blindness of Camouflaged Soldier Images)

  • 최근하
    • 한국군사과학기술학회지
    • /
    • 제23권2호
    • /
    • pp.139-146
    • /
    • 2020
  • The camouflage pattern was difficult to distinguish from the surrounding background, so it was difficult to classify the object and the background image when the color image is used as the training data of deep-learning. In this paper, we proposed a red-green color blindness image transformation method using the principle that people of red-green blindness distinguish green color better than ordinary people. Experimental results show that the camouflage soldier's recognition performance improved by proposed a deep learning model of the ensemble technique using the imitated red-green-blind image data and the original color image data.

Efficient Large Dataset Construction using Image Smoothing and Image Size Reduction

  • Jaemin HWANG;Sac LEE;Hyunwoo LEE;Seyun PARK;Jiyoung LIM
    • 한국인공지능학회지
    • /
    • 제11권1호
    • /
    • pp.17-24
    • /
    • 2023
  • With the continuous growth in the amount of data collected and analyzed, deep learning has become increasingly popular for extracting meaningful insights from various fields. However, hardware limitations pose a challenge for achieving meaningful results with limited data. To address this challenge, this paper proposes an algorithm that leverages the characteristics of convolutional neural networks (CNNs) to reduce the size of image datasets by 20% through smoothing and shrinking the size of images using color elements. The proposed algorithm reduces the learning time and, as a result, the computational load on hardware. The experiments conducted in this study show that the proposed method achieves effective learning with similar or slightly higher accuracy than the original dataset while reducing computational and time costs. This color-centric dataset construction method using image smoothing techniques can lead to more efficient learning on CNNs. This method can be applied in various applications, such as image classification and recognition, and can contribute to more efficient and cost-effective deep learning. This paper presents a promising approach to reducing the computational load and time costs associated with deep learning and provides meaningful results with limited data, enabling them to apply deep learning to a broader range of applications.