자동차 번호인식을 위해선 수많은 번호판 데이터가 필요하다. 번호판 데이터는 과거의 번호판부터 최신의 번호판까지 균형 있는 데이터의 확보가 필요하다. 하지만 실제 과거의 번호판부터 최신의 번호판의 데이터를 획득하는데 어려움이 있다. 이러한 문제를 해결하기 위해 인조 번호판을 이용하여 자동차 번호판을 생성하여 딥러닝을 통한 번호판 인식 연구가 진행되고 있다. 하지만 인조 데이터는 실제 데이터와 차이가 존재하며, 이러한 문제를 해결하기 위해 다양한 데이터 증강 기법을 사용한다. 기존 데이터 증강 방식은 단순히 밝기, 회전, 어파인 변환, 블러, 노이즈등의 방법을 사용하였다. 본 논문에서는 데이터 증강 방법으로 인조데이터를 실제 데이터 스타일로 변환하는 스타일 변환 방법을 적용한다. 또한 실제 번호판 데이터는 원거리가 많고 어두운 경우 잡음이 많이 존재한다. 단순히 입력데이터를 가지고 문자를 인식할 경우 오인식의 가능성이 높다. 이러한 경우 문자인식 향상을 위해 본 논문에서는 문자인식을 위하여 화질개선 방법으로 DeblurGANv2 방법을 적용하여 번호판 인식 정확도를 높였다. 번호판 검출 및 번호판 번호인식을 위한 딥러닝의 방식은 YOLO-V5를 사용하였다. 인조 번호판 데이터 성능을 판단하기 위해 자체적으로 확보한 자동차 번호판을 수집하여 테스트 셋을 구성하였다. 스타일 변환을 적용하지 않은 번호판 검출이 0.614mAP를 기록하였다. 스타일 변환을 적용한 결과 번호판 검출 성능이 0.679mAP 기록하여 성능이 향상되었음을 확인하였다. 또한 번호판 문자인식에는 화질 개선을 하지 않은 검출 성공률은 0.872를 기록하였으며, 화질 개선 후 검출 성능이 0.915를 기록하여 성능 향상이 되었음을 확인 하였다.
국내 200 m 이상 연장의 터널에서는 CCTV 설치가 의무화되어 있으며, 터널 내 돌발 상황을 자동으로 인지한 다음 터널 관리자에게 알릴 수 있는 터널 영상유고시스템의 운영이 권고된다. 여기서 터널 내 설치된 CCTV는 터널 구조물의 공간적인 한계로 인해 낮은 높이로 설치된다. 이에 따라 이동차량과 매우 인접하므로, 이동차량과 CCTV와의 거리에 따른 원근현상이 매우 심하다. 이로 인해, 기존 터널 영상유고시스템은 터널 CCTV로부터 멀리 떨어질수록 차량의 정차 및 역주행, 보행자 출현 및 화재 발생과 같은 터널 내 유고상황을 인지하기 매우 어려우며, 100 m 이상의 거리에서는 높은 유고상황 인지 성능을 기대하기 어려운 것으로 알려져 있다. 이 문제를 해결하기 위해 관심영역 설정 및 역 원근변환(Inverse perspective transform)을 도입하였으며, 이 과정을 통해 얻은 변환영상은 먼 거리에 있는 객체의 크기가 확대된다. 이에 따라 거리에 따라 객체의 크기가 비교적 일정하게 유지되므로, 거리에 따른 객체 인식 성능과 영상에서 보이는 차량의 이동속도 또한 일관성을 유지할 수 있다. 이를 증명하기 위해 본 논문에서는 터널 CCTV의 원본영상과 변환영상을 바탕으로 동일한 조건을 가지는 데이터셋을 각각 제작 및 구성하였으며, 영상 내 차량의 실제 위치의 변화에 따른 겉보기 속도와 객체 크기를 비교하였다. 그 다음 딥러닝 객체인식 모델의 학습 및 추론을 통해 각 영상 데이터셋에 대한 거리에 따른 객체인식 성능을 비교하였다. 결과적으로 변환영상을 사용한 모델은 200 m 이상의 거리에서도 객체인식 성능과 이동차량의 유고상황 인지 성능을 확보할 수 있음을 보였다.
본 연구는 유출모형 연구를 위해 주로 사용되었던 DNN에서 벗어나, 다양한 신경망을 이용하여 유출모형을 개발하고 모형의 적합성을 나타내고자 하였다. 이를 위해 분류문제에만 사용되었던 CNN을 활용하였는데, 본 모형의 입력자료로 일반적으로 CNN에서 사용하는 사진을 이용할 수 없으며, 연구의 특성상 유역조건 및 강우 등의 영향이 반영된 수치적(numerical) 이미지(image)를 사용해야 하는 난해점이 있다. 이를 해결하고자 NRCS의 CN을 사용하여 이미지를 생성했으며, CNN 모형의 입력자료로 충분히 활용 가능함을 나타냈다. 이에 더하여, 유출 추정을 위해서만 사용되어왔던 CN의 새로운 용도를 제시할 수 있었다. 모형의 학습 및 검정 결과, 전반적으로 안정적으로 모형의 학습 및 일반화가 이루어졌으며, 관측값과 산정값간의 관계를 나타내는 R2는 0.79로 비교적 높은 값이 나타났다. 또한, 모형의 평가결과는 Pearson 상관계수, NSE, 및 RMSE 등이 각각 0.84, 0.65 및 24.54 ㎥/s으로 나타나, 전반적으로 양호한 모형의 산정성능을 보인것으로 나타났다.
이 연구에서는 국내 연안어장을 대상으로 조식동물 및 서식지에 대한 수중영상 기반의 인공지능 학습자료를 구축하고, state-of-the-art (SOTA) 모델인 High Resolution Network-Object Contextual Representation(HRNet-OCR)과 Shifted Windows-L (Swin-L)을 이용하여, 조식동물 서식지 수중영상의 의미론적 분할을 수행함으로써 화소 또는 화소군 간의 공간적 맥락(상관성)을 반영하는 보다 실제적인 탐지 결과를 제시하였다. 조식동물 서식지인 감태, 모자반의 수중영상 레이블 중 1,390장을 셔플링(shuffling)하여 시험평가를 수행한 결과, 한국수산자원공단의 DeepLabV3+ 사례에 비해 약 29% 향상된 정확도를 도출하였다. 모든 클래스에 대해 Swin-L이 HRNet-OCR보다 판별율이 더 좋게 나타났으며, 특히 데이터가 적은 감태의 경우, Swin-L이 해당 클래스에 대한 특징을 더 풍부하게 반영할 수 있는 것으로 나타났다. 영상분할 결과 대상물과 배경이 정교하게 분리되는 것을 확인되었는데, 이는 Transformer 계열 백본을 활용하면서 특징 추출능력이 더욱 향상된 것으로 보인다. 향후 10,000장의 레이블 데이터베이스가 완성되면 추가적인 정확도 향상이 가능할 것으로 기대된다.
최근 영상 데이터의 급증으로 이를 효과적으로 처리하기 위해 객체 탐지 및 추적, 행동 인식, 표정 인식, 재식별(Re-ID)과 같은 다양한 컴퓨터비전 기술에 대한 수요도 급증했다. 그러나 객체 탐지 및 추적 기술은 객체의 영상 촬영 장소 이탈과 재등장, 오클루전(Occlusion) 등과 같이 성능을 저하시키는 많은 어려움을 안고 있다. 이에 따라 객체 탐지 및 추적 모델을 근간으로 하는 행동 및 표정 인식 모델 또한 객체별 데이터 추출에 난항을 겪는다. 또한 다양한 모델을 활용한 딥러닝 아키텍처는 병목과 최적화 부족으로 성능 저하를 겪는다. 본 연구에서는 YOLOv5기반 DeepSORT 객체추적 모델, SlowFast 기반 행동 인식 모델, Torchreid 기반 재식별 모델, 그리고 AWS Rekognition의 표정 인식 모델을 활용한 영상 분석 시스템에 단일 연결 계층적 군집화(Single-linkage Hierarchical Clustering)를 활용한 재식별(Re-ID) 기법과 GPU의 메모리 스루풋(Throughput)을 극대화하는 처리 기법을 적용한 행동 및 표정 검출용 영상 분석 시스템을 제안한다. 본 연구에서 제안한 시스템은 간단한 메트릭을 사용하는 재식별 모델의 성능보다 높은 정확도와 실시간에 가까운 처리 성능을 가지며, 객체의 영상 촬영 장소 이탈과 재등장, 오클루전 등에 의한 추적 실패를 방지하고 영상 내 객체별 행동 및 표정 인식 결과를 동일 객체에 지속적으로 연동하여 영상을 효율적으로 분석할 수 있다.
음향 이벤트 인식은 다수의 음향 이벤트가 발생하는 환경에서 이를 인식하고 각각의 발생과 소멸 시점을 판단하는 기술로써 인간의 청각적 인지 특성을 모델화하는 연구다. 음향 장면 및 이벤트 인식 연구 그룹인 DCASE는 연구자들의 참여 유도와 더불어 음향 인식 연구의 활성화를 위해 챌린지를 진행하고 있다. 그러나 DCASE 챌린지에서 제공하는 데이터 세트는 이미지 인식 분야의 대표적인 데이터 세트인 이미지넷에 비해 상대적으로 작은 규모이며, 이 외에 공개된 음향 데이터 세트는 많지 않아 알고리즘 개발에 어려움이 있다. 본 연구에서는 음향 이벤트 인식 기술 개발을 위해 실내외에서 발생할 수 있는 이벤트를 정의하고 수집을 진행하였으며, 보다 큰 규모의 데이터 세트를 확보하였다. 또한, 인식 성능 개선을 위해 음향 이벤트 존재 여부를 판단하는 보조 신경망을 추가한 이중 CNN 구조의 알고리즘을 개발하였고, 2016년과 2017년의 DCASE 챌린지 기준 시스템과 성능 비교 실험을 진행하였다.
암석 분류에 필요한 인적, 시간적 소모를 최소화하기 위해 최근 인공지능을 활용한 암석 분류 연구가 대두되었다. 이에 본 연구에서는 편광현미경 박편 이미지를 활용하여 염기성 화산암을 세분류하고자 하였다. 분류에 사용된 인공지능 모델은 Tensorflow, Keras 라이브러리를 기반으로 합성곱 신경망 모델을 자체 제작하였다. Olivine basalt, basaltic andesite, olivine tholeiite, trachytic olivine basalt 기준시료 박편을 개방 니콜, 직교 니콜, 그리고 gypsum plate를 장착하고 촬영한 이미지 총 720장을 인공지능 모델에 training : test = 7 : 3 비율로 학습시켰다. 학습결과, 80~90%이상의 분류 정확도를 보였다. 각각의 인공지능 모델의 분류 정확도를 확인하였을 때, 본 모델의 암석분류 방식이 지질학자의 암석 분류 프로세스와 크게 다르지 않을 것으로 예상된다. 나아가 본 모델 뿐 아니라 보다 다양한 암석종을 세분시키는 모델을 제작하여 통합한다면, 데이터 분류의 신속성과 비전문가의 접근성 모두를 만족시키는 인공지능 모델을 개발할 수 있으며, 이를 통해 암석학 기초연구의 새로운 틀을 마련할 수 있을 것으로 생각된다.
최근 5년간 고속도로에서 발생한 사망 사고의 통계를 살펴보면, 고속도로 전체 사망자 중 갓길에서 발생한 사망자의 사망률이 약 3배 높은 것으로 나타났다. 이는 갓길 사고 발생 시 사고의 심각도가 매우 높다는 것을 보여주며, 갓길 차로 위반 차량을 단속하여 사고를 미연에 방지하는 것이 중요하다는 것을 시시한다. 이에 본 연구는 Faster R-CNN 기법을 활용하여 갓길 차로 위반 차량을 검출할 수 있는 방법을 제안하였다. Faster R-CNN 기법을 기반으로 차량을 탐지하고, 추가적인 판독 모듈을 구성하여 갓길 위반 여부를 판단하였다. 실험 및 평가를 위해 현실세계와 유사하게 상황을 재현할 수 있는 시뮬레이션 게임인 GTAV를 활용하였다. 이미지 형태의 학습데이터 1,800장과 평가데이터 800장을 가공 및 생성하였으며, ZFNet과 VGG16에서 Threshold 값의 변화에 따른 성능을 측정하였다. 그 결과 Threshold 0.8 기준 ZFNet 99.2%, Threshold 0.7 기준 VGG16 93.9%의 검출율을 보였고, 모델 별 평균 검출 속도는 ZFNet 0.0468초, VGG16 0.16초를 기록하여 ZFNet의 검출율이 약 7% 정도 높았으며, 검출 속도 또한 약 3.4배 빠름을 확인하였다. 이는 비교적 복잡하지 않은 네트워크에서도 입력 영상의 전처리 없이 빠른 속도로 갓길 차로 위반 차량의 검출이 가능함을 보여주며, 실제 영상자료 기반의 학습데이터셋을 충분히 확보한다면 지정 차로 위반 검출에 본 알고리즘을 활용할 수 있다는 것을 시사한다.
연구목적: 2022년 산업재해 현황 부가통계에서 건설업 사망사고자 현황을 보면 건설업 전체 사망사고자의 27.8%가 건설장비로 인해 발생하고 있다. 현장 대형화, 고층화 등으로 발생하는 순회 및 점검의 한계를 극복하기 위해 컴퓨터 비전 기술을 활용해 건설장비를 추출할 수 있는 모델을 구축하고 해당 모델의 정확도 및 현장 적용성에 대해 분석하고자 한다. 연구방법:본 연구에서는 건설장비 중 굴착기, 덤프트럭, 이동식 크레인의 이미지 데이터를 딥러닝 학습시킨 뒤 학습 결과를 평가 및 분석하고 건설현장에 적용하여 분석한다. 연구결과: 'A' 현장에서는 굴착기 및 덤프트럭의 객체를 추출하였으며, 평균 추출 정확도는 굴착기 81.42%, 덤프트럭 78.23%를 나타냈다. 'B' 현장의 이동식 크레인은 78.14%의 평균 정확도를 보여줬다. 결론: 현장 안전관리의 효율성이 증가할 수 있고, 재해발생 위험요인을 최소화 할 수 있을것이라 본다. 또한, 본 연구를 기반으로 건설현장에 스마트 건설기술 도입에 관한 기초적인 자료로 활용이 가능하다.
본 논문에서는 도심 영상에 대해 맨하탄 좌표계를 추정하는 합성곱 신경망(Convolutional Neural Network) 기반의 시스템을 제안한다. 도심 영상에서 맨하탄 좌표계를 추정하는 것은 영상 조정, 3차원 장면 복원 등 컴퓨터 그래픽스 및 비전 문제 해결의 기본이 된다. 제안하는 합성곱 신경망은 GoogLeNet[1]을 기반으로 구성한다. 합성곱 신경망을 훈련하기 위해 구글 스트리트 뷰 API로 영상을 수집하고 기존 캘리브레이션 방법으로 맨하탄 좌표계를 계산하여 데이터셋을 생성한다. 장면마다 새롭게 합성곱 신경망을 학습해야하는 PoseNet[2]과 달리, 본 논문에서 제안하는 시스템은 장면의 구조를 학습하여 맨하탄 좌표계를 추정하기 때문에 학습되지 않은 새로운 장면에 대해서도 맨하탄 좌표계를 추정한다. 제안하는 방법은 학습에 참여하지 않은 구글 스트리트 뷰 영상을 검증 데이터로 테스트하였을 때 $3.157^{\circ}$의 중간 오차로 맨하탄 좌표계를 추정하였다. 또한, 동일 검증 데이터에 대해 제안하는 방법이 기존 맨하탄 좌표계 추정 알고리즘[3]보다 더 낮은 중간 오차를 보이는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.