• 제목/요약/키워드: Image deep learning

검색결과 1,852건 처리시간 0.031초

Deep Learning Algorithm for Simultaneous Noise Reduction and Edge Sharpening in Low-Dose CT Images: A Pilot Study Using Lumbar Spine CT

  • Hyunjung Yeoh;Sung Hwan Hong;Chulkyun Ahn;Ja-Young Choi;Hee-Dong Chae;Hye Jin Yoo;Jong Hyo Kim
    • Korean Journal of Radiology
    • /
    • 제22권11호
    • /
    • pp.1850-1857
    • /
    • 2021
  • Objective: The purpose of this study was to assess whether a deep learning (DL) algorithm could enable simultaneous noise reduction and edge sharpening in low-dose lumbar spine CT. Materials and Methods: This retrospective study included 52 patients (26 male and 26 female; median age, 60.5 years) who had undergone CT-guided lumbar bone biopsy between October 2015 and April 2020. Initial 100-mAs survey images and 50-mAs intraprocedural images were reconstructed by filtered back projection. Denoising was performed using a vendor-agnostic DL model (ClariCT.AITM, ClariPI) for the 50-mAS images, and the 50-mAs, denoised 50-mAs, and 100-mAs CT images were compared. Noise, signal-to-noise ratio (SNR), and edge rise distance (ERD) for image sharpness were measured. The data were summarized as the mean ± standard deviation for these parameters. Two musculoskeletal radiologists assessed the visibility of the normal anatomical structures. Results: Noise was lower in the denoised 50-mAs images (36.38 ± 7.03 Hounsfield unit [HU]) than the 50-mAs (93.33 ± 25.36 HU) and 100-mAs (63.33 ± 16.09 HU) images (p < 0.001). The SNRs for the images in descending order were as follows: denoised 50-mAs (1.46 ± 0.54), 100-mAs (0.99 ± 0.34), and 50-mAs (0.58 ± 0.18) images (p < 0.001). The denoised 50-mAs images had better edge sharpness than the 100-mAs images at the vertebral body (ERD; 0.94 ± 0.2 mm vs. 1.05 ± 0.24 mm, p = 0.036) and the psoas (ERD; 0.42 ± 0.09 mm vs. 0.50 ± 0.12 mm, p = 0.002). The denoised 50-mAs images significantly improved the visualization of the normal anatomical structures (p < 0.001). Conclusion: DL-based reconstruction may enable simultaneous noise reduction and improvement in image quality with the preservation of edge sharpness on low-dose lumbar spine CT. Investigations on further radiation dose reduction and the clinical applicability of this technique are warranted.

Himawari-8 정지궤도 위성 영상을 활용한 딥러닝 기반 산불 탐지의 효율적 방안 제시 (Efficient Deep Learning Approaches for Active Fire Detection Using Himawari-8 Geostationary Satellite Images)

  • 이시현;강유진;성태준;임정호
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.979-995
    • /
    • 2023
  • 산불은 예측이 어려운 재해이기 때문에 실시간 모니터링을 통해 빠르게 대응하는 것이 중요하며, 정지 궤도 위성 영상은 광역을 짧은 시간 간격으로 모니터링할 수 있어 산불 탐지 분야에 활발히 이용되고 있다. 기존의 위성 영상 기반 산불 탐지 알고리즘은 밝기 온도의 통계량 분석을 통한 임계값 기반으로 이상치를 탐지하는 방향으로 진행되어 왔다. 그러나 강도가 약한 산불을 탐지하기 어렵거나, 적절한 임계값 설정의 어려움으로 일반화 성능이 저하되는 한계점이 있어 최근에는 기계학습을 이용한 산불 탐지 알고리즘들이 제시되고 있다. 현재까지는 random forest, VanillaConvolutional neural network (CNN), U-net 구조 등의 비교적 간단한 기법이 적용되고 있다. 따라서, 본 연구에서는 정지궤도 위성인 Advanced Himawari Imager를 이용하여 동아시아와 호주를 대상으로 State of the Art (SOTA)딥러닝 기법을 적용한 산불 탐지 알고리즘을 개발하고자 하였다. SOTA 모델은 EfficientNet과 lion optimizer를 적용하여 개발하고, Vanilla CNN 구조를 사용한 모델과 산불 탐지 결과를 비교하였다. EfficientNet은 동아시아와 호주에서 0.88 및 0.83의 F1-score를 기록함으로써 CNN (동아시아: 0.83, 호주: 0.78)에 비해 뛰어난 성능을 입증하였다. EfficientNet에 불균형 문제 해결을 위한 weighted loss, equal sampling, image augmentation 기법 적용 시, 동아시아와 호주에서 각각 0.92와 0.84의 F1-score를 기록함으로써 적용 전(동아시아: 0.88, 호주: 0.83)에 비하여 성능이 향상되었음을 확인하였다. 본 연구를 통하여 제시된 SOTA 딥러닝 기법의 산불 탐지에의 적용 가능성과 딥러닝 모델의 성능 향상을 위해 고려해야 할 방향은 향후 산불탐지 분야에 대한 딥러닝 적용에 도움이 될 것으로 기대된다.

베이지안 최적화를 이용한 암상 분류 모델의 하이퍼 파라미터 탐색 (Hyperparameter Search for Facies Classification with Bayesian Optimization)

  • 최용욱;윤대웅;최준환;변중무
    • 지구물리와물리탐사
    • /
    • 제23권3호
    • /
    • pp.157-167
    • /
    • 2020
  • 최근 인공지능 기술의 발전과 함께 물리탐사의 다양한 분야에서도 인공지능의 핵심 기술인 머신러닝의 활용도가 증가하고 있다. 또한 머신러닝 및 딥러닝을 활용한 연구는 이미지, 비디오, 음성, 자연어 등 다양한 태스크의 추론 정확도를 높이기 위해 복잡한 알고리즘들이 개발되고 있고, 더 나아가 자료의 특성, 알고리즘 구조 및 하이퍼 파라미터의 최적화를 위한 자동 머신러닝(AutoML) 분야로 그 폭을 넓혀가고 있다. 본 연구에서는 AutoML 분야 중에서도 하이퍼 파라미터(hyperparameter) 자동 탐색을 위한 베이지안 최적화 기술에 중점을 두었으며, 본 기술을 물리탐사 분야에서도 암상 분류(facies classification) 문제에 적용했다. Vincent field의 현장 물리검층 및 탄성파 자료를 이용하여 암상 및 공극유체를 분류하는 지도학습 기반 모델에 적용하였고, 랜덤 탐색 기법의 결과와 비교하여 베이지안 최적화 기반 예측 프레임워크의 효율성을 검증하였다.

차량 검출용 CNN 분류기의 실시간 처리를 위한 하드웨어 설계 (A Real-Time Hardware Design of CNN for Vehicle Detection)

  • 방지원;정용진
    • 전기전자학회논문지
    • /
    • 제20권4호
    • /
    • pp.351-360
    • /
    • 2016
  • 최근 딥 러닝을 중심으로 빠르게 발전하고 있는 기계학습 분류 알고리즘은 기존의 방법들보다 뛰어난 성능으로 인하여 주목받고 있다. 딥 러닝 중에서도 Convolutional Neural Network(CNN)는 영상처리에 뛰어나 첨단 운전자 보조 시스템(Advanced Driver Assistance System : ADAS)에서 많이 사용되고 있는 추세이다. 하지만 차량용 임베디드 환경에서 CNN을 소프트웨어로 동작시켰을 때는 각 Layer마다 연산이 반복되는 알고리즘의 특성으로 인해 수행시간이 길어져 실시간 처리가 어렵다. 본 논문에서는 임베디드 환경에서 CNN의 실시간 처리를 위하여 Convolution 연산 및 기타 연산들을 병렬로 처리하여 CNN의 속도를 향상시키는 하드웨어 구조를 제안한다. 제안하는 하드웨어의 성능을 검증하기 위하여 Xilinx ZC706 FPGA 보드를 이용하였다. 입력 영상은 $36{\times}36$ 크기이며, 동작주파수 100MHz에서 하드웨어 수행시간은 약 2.812ms로 실시간 처리가 가능함을 확인했다.

Convolutional Neural Network를 통한 대규모 한글 데이터 학습 (Learning of Large-Scale Korean Character Data through the Convolutional Neural Network)

  • 김연규;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.97-100
    • /
    • 2016
  • CNN(Convolutinal Neural Network)을 사용하여 다양한 분야에 대한 심화 학습이 진행되고 있으며 이미지 인식 분야에서 특히 높은 성능을 보이고 있다. 본 논문에서는 5,000,000개 이상의 대규모 한글 문자 데이터베이스를 사용하여 한글을 Convolutional Neural Network에 학습 시킨 후 테스트 정확도를 확인한다. 실험에 사용된 CNN 구조는 AlexNet에 기반하여 새로 만들어진 KCR(Korean Character Recognition)-AlexNet 이며 학습 결과 98% 이상의 테스트 정확도를 보였다. 실험에 사용된 데이터베이스는 대규모 한글 데이터 데이터베이스인 PHD08로 총 2,350개의 한글 문자에 대해 각 문자마다 2,187개의 샘플을 가져 총 5,139,450 개의 데이터가 존재한다. 본 연구를 통해 KCR-AlexNet이 한글 데이터베이스인 PHD08을 학습하는데 우수한 구조임을 보인다.

  • PDF

합성곱 신경망 기초 실습 사례 개발 (Development of Convolutional Neural Network Basic Practice Cases)

  • 허경
    • 실천공학교육논문지
    • /
    • 제14권2호
    • /
    • pp.279-285
    • /
    • 2022
  • 본 논문에서는 비전공자들을 위한 교양과정으로, 기초 합성곱신경망 과목 커리큘럼을 설계하는데 필수적으로 요구되는 합성곱신경망 기초 실습 사례를 개발하였다. 개발된 실습 사례는 합성곱신경망의 동작원리를 이해시키는 데 초점을 두고, 시각화된 전체 과정을 확인할 수 있도록 스프레드시트를 사용하였다. 개발된 실습 사례는 지도학습 방식의 이미지 훈련데이터 생성, 입력층, 컨볼루션층(합성곱층), 풀링층 그리고 출력층을 차례대로 구현하고, 신규 데이터에 대해 합성곱신경망의 성능을 테스트하는 것으로 구성되었다. 본 논문에서 개발한 실습사례를 확장하여 인식하려는 이미지 개수를 확장하거나, 고화질의 이미지에 대한 압축률을 높이는 합성곱신경망을 만드는 기초 실습 사례를 만들 수 있다. 따라서, 본 합성곱신경망 기초 실습 사례의 활용도가 높다고 할 수 있다.

Design of weighted federated learning framework based on local model validation

  • Kim, Jung-Jun;Kang, Jeon Seong;Chung, Hyun-Joon;Park, Byung-Hoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권11호
    • /
    • pp.13-18
    • /
    • 2022
  • 본 논문에서는 학습에 참여하는 각 디바이스의 모델들로부터 성능검증에 따라 가중치를 두어 글로벌 모델을 업데이트하는 VW-FedAVG(Validation based Weighted FedAVG)를 두 가지 방식으로 제안 한다. 첫 번째 방식은 서버 검증(Server side Validation) 구조로 글로벌 모델을 업데이트 하기 전에 각 로컬 클라이언트 모델을 하나의 전체 검증 데이터셋을 통해 검증하도록 설계 했다. 두 번째는 클라이언트 검증(Client side Validation) 구조로 검증 데이터셋을 각 클라이언트에 고르게 분배하여 검증을 한 후 글로벌 모델을 업데이트 하는 방식으로 설계 했다. 전체 실험에 적용한 데이터셋은 MNIST, CIFAR-10으로 이미지 분류에 대해 IID, Non-IID 분포에서 기존 연구 대비 더 높은 정확도를 얻을 수 있었다.

인공 신경망 기반의 지문 영상 복원 알고리즘 (An Algorithm of Fingerprint Image Restoration Based on an Artificial Neural Network)

  • 장석우;이사무엘;김계영
    • 한국산학기술학회논문지
    • /
    • 제21권8호
    • /
    • pp.530-536
    • /
    • 2020
  • 일반적인 지문 인식기에서 이용되는 미뉴셔 특징은 표현 공격에는 강건하지만 오 정합률이 상대적으로 높다는 약점이 있다. 따라서 미뉴셔 특징은 스켈리톤 영상과 함께 이용되는 경향이 있다. 보통 지문의 미뉴셔 특징에 대한 보안 취약성 연구는 많이 진행되어 있으나 스켈리톤에 대한 취약성 연구는 미약한 형편이므로 본 연구에서는 스켈리톤에 대한 표현 공격의 취약성을 분석하고자 한다. 이를 위해, 본 연구에서는 지문의 스켈리톤으로부터 학습 알고리즘을 사용해 원래의 지문을 복구하는 방법을 제시한다. 본 논문에서 제시된 방법은 기존의 Pix2Pix 모델에 잠재 벡터를 추가한 새로운 학습 모델인 Pix2Pix을 제안하여, 보다 자연스러운 지문을 생성한다. 본 논문의 실험 결과에서는 제시된 학습 알고리즘을 이용해 원래의 지문을 복원한 다음, 복원된 지문을 지문 인식기에 입력시켜 높은 인식률을 달성하였다. 그러므로 본 연구는 스켈리톤을 함께 이용하는 지문 인식기는 표현 공격에 취약함을 검증하였다. 본 논문에서 제시된 접근방법은 지문 인식 및 복원, 비디오 보안, 생체 인식 등과 연관된 많은 실제적인 응용 분야에서 유용하게 사용될 것으로 기대된다.

멀티 브랜치 네트워크 구조 탐색을 사용한 구름 영역 분할 (Semantic Segmentation of Clouds Using Multi-Branch Neural Architecture Search)

  • 정치윤;문경덕;김무섭
    • 대한원격탐사학회지
    • /
    • 제39권2호
    • /
    • pp.143-156
    • /
    • 2023
  • 인공위성이 촬영한 영상의 내용을 정확하게 분석하기 위해서는 영상에 존재하는 구름 영역을 정확하게 인지하는 것이 필요하다. 최근 다양한 분야에서 딥러닝(deep learning) 모델이 뛰어난 성능을 보여줌에 따라 구름 영역 검출을 위해 딥러닝 모델을 적용한 방법들이 많이 제안되고 있다. 하지만 현재 구름 영역 검출 방법들은 의미 영역 분할 방법의 네트워크 구조를 그대로 사용하여 구름 검출 성능을 향상하는 데는 한계가 있다. 따라서 본 논문에서는 구름 검출 데이터 세트에 다중 브랜치 네트워크 구조 탐색을 적용하여 구름 영역 검출에 최적화된 네트워크 모델을 생성함으로써 구름 검출 성능을 향상하는 방법을 제안한다. 또한 구름 검출 성능을 향상하기 위하여 의미 영역 분할 모델의 학습 단계와 평가 단계의 평가 기준 불일치를 해소하기 위해 제안된 soft intersection over union (IoU) 손실 함수를 사용하고, 다양한 데이터 증강 방법을 적용하여 학습 데이터를 증가시켰다. 본 논문에서 제안된 방법의 성능을 검증하기 위하여 아리랑위성 3/3A호에서 촬영한 영상으로 구성된 구름 검출 데이터 세트를 사용하였다. 먼저 제안 방법과 의미 영역 분할 데이터 세트에서 탐색된 기존 네트워크 모델의 성능을 비교하였다. 실험 결과, 제안 방법의 mean IoU는 68.5%이며, 기존 모델보다 mIoU 측면에서 4%의 높은 성능을 보여주었다. 또한 soft IoU 손실 함수를 포함한 다섯 개의 손실 함수를 적용하여 손실 함수에 따른 구름 검출 성능을 분석하였으며, 실험 결과 본 연구에서 사용한 soft IoU 함수가 가장 좋은 성능을 보여주었다. 마지막으로 의미 영역 분할 분야에서 활용되는 최신 네트워크 모델과 제안 방법의 구름 검출 성능을 비교하였다. 실험 결과, 제안 모델이 의미 영역 분할 분야의 최신 모델들보다 mIoU와 정확도 측면에서 더 나은 성능을 보여주는 것을 확인하였다.

R2와 어텐션을 적용한 유넷 기반의 영상 간 변환에 관한 연구 (Image-to-Image Translation Based on U-Net with R2 and Attention)

  • 임소현;전준철
    • 인터넷정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.9-16
    • /
    • 2020
  • 영상 처리 및 컴퓨터 비전 분야에서 하나의 영상을 통해 다른 영상으로 재구성하거나 새로운 영상을 생성하는 문제는 하드웨어의 발전에 따라 꾸준히 주목받고 있다. 그러나 컴퓨터를 통해 생성한 이미지를 사람의 눈으로 바라봤을 때 자연스럽지 않다는 문제 또한 계속해서 대두되고 있다. 최근 딥러닝 분야에 대한 연구가 활발히 진행됨에 따라 이를 활용한 영상 생성 및 개선 문제 또한 활발히 연구되고 있으며 그 중에서도 적대적 생성 신경망(Generative Adversarial Network)이라는 네트워크가 영상 생성 분야에 있어 좋은 결과를 보이고 있다. 적대적 생성 신경망이 제안된 이후 이를 기반으로 하는 다양한 네트워크가 제시됨에 따라 영상 생성 분야에서 더 자연스러운 영상을 생성하는 것이 가능해졌다. 그 중 pix2pix은 조건 적대적 생성 신경망 모델로 다양한 데이터셋에서도 좋은 성능을 보이는 범용적인 네트워크이다. pix2pix는 U-Net을 기반으로 두고 있으나 U-Net을 기반으로 하는 네트워크 중에서는 더 좋은 성능을 보이는 네트워크가 다수 존재한다. 때문에 본 연구에서는 pix2pix의 U-Net에 다양한 네트워크를 적용해 영상을 생성하고 그 결과를 상호 비교 평가한다. 각 네트워크를 통해 생성된 영상을 통해 기존의 U-Net을 사용한 pix2pix 모델보다 어텐션, R2, 어텐션-R2 네트워크를 적용한 pix2pix 모델이 더 좋은 성능을 보이는 것을 확인하고 그 중 가장 성능이 뛰어난 네트워크의 한계점을 향후 연구로 제시한다.