• Title/Summary/Keyword: Image deep learning

Search Result 1,852, Processing Time 0.039 seconds

FisheyeNet: Fisheye Image Distortion Correction through Deep Learning (FisheyeNet: 딥러닝을 활용한 어안렌즈 왜곡 보정)

  • Lee, Hongjae;Won, Jaeseong;Lee, Daeun;Rhee, Seongbae;Kim, Kyuheon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.271-274
    • /
    • 2021
  • Fisheye 카메라로 촬영된 영상은 일반 영상보다 넓은 시야각을 갖는 장점으로 여러 분야에서 활용되고 있다. 그러나 fisheye 카메라로 촬영된 영상은 어안렌즈의 곡률로 인하여 영상의 중앙 부분은 팽창되고 외곽 부분은 축소되는 방사 왜곡이 발생하기 때문에 영상을 활용함에 있어서 어려움이 있다. 이러한 방사 왜곡을 보정하기 위하여 기존 영상처리 분야에서는 렌즈의 곡률을 수학적으로 계산하여 보정하기도 하지만 이는 각각의 렌즈마다 왜곡 파라미터를 추정해야 하기 때문에, 개별적인 GT (Ground Truth) 영상이 필요하다는 제한 사항이 있다. 이에 본 논문에서는 렌즈의 종류마다 GT 영상을 필요로 하는 기존 기술의 제한 사항을 극복하기 위하여, fisheye 영상만을 입력으로 하여 왜곡계수를 계산하는 딥러닝 네트워크를 제안하고자 한다. 또한, 단일 왜곡계수를 왜곡모델로 활용함으로써 layer 수를 크게 줄일 수 있는 경량화 네트워크를 제안한다.

  • PDF

Improvement of concrete crack detection using Dilated U-Net based image inpainting technique (Dilated U-Net에 기반한 이미지 복원 기법을 이용한 콘크리트 균열 탐지 개선 방안)

  • Kim, Su-Min;Sohn, Jung-Mo;Kim, Do-Soo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.65-68
    • /
    • 2021
  • 본 연구에서는 Dilated U-Net 기반의 이미지 복원기법을 통해 콘크리트 균열 추출 성능 개선 방안을 제안한다. 콘크리트 균열은 구조물의 미관상의 문제뿐 아니라 추후 큰 안전사고의 원인이 될 수 있어 초기대응이 중요하다. 현재는 점검자가 직접 육안으로 검사하는 외관 검사법이 주로 사용되고 있지만, 이는 정확성 및 비용, 시간, 그리고 안전성 면에서 한계를 갖고 있다. 이에 콘크리트 구조물 표면에 대해 획득한 영상 처리 기법을 사용한 검사 방식 도입의 관심이 늘어나고 있다. 또한, 딥러닝 기술의 발달로 딥러닝을 적용한 영상처리의 연구 역시 활발하게 진행되고 있다. 본 연구는 콘크리트 균열 추개선출 성능 개선을 위해 Dilated U-Net 기반의 이미지 복원기법을 적용하는 방안을 제안하였고 성능 검증 결과, 기존 U-Net 기반의 정확도가 98.78%, 조화평균 82.67%였던 것에 비해 정확도 99.199%, 조화평균 88.722%로 성능이 되었음을 확인하였다.

  • PDF

A Study on the Video Quality Improvement of National Intangible Cultural Heritage Documentary Film (국가무형문화재 기록영상 화질 개선에 관한 연구)

  • Kwon, Do-Hyung;Yu, Jeong-Min
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.439-441
    • /
    • 2020
  • 본 논문에서는 국가무형문화재 기록영상의 화질 개선에 관한 연구를 진행한다. 기록영상의 화질 개선을 위해 SRGAN 기반의 초해상화 복원영상 생성 프레임워크의 적용을 제안한다. Image aumentation과 median filter를 적용한 데이터셋과 적대적 신경망인 Generative Adversarial Network (GAN)을 기반으로 딥러닝 네트워크를 구축하여 입력된 Low-Resolution 이미지를 통해 High-Resolution의 복원 영상을 생성한다. 이 연구를 통해 국가무형문화재 기록영상 뿐만 아니라 문화재 전반의 사진 및 영상 기록 자료의 품질 개선 가능성을 제시하고, 영상 기록 자료의 아카이브 구축을 통해 지속적인 활용의 기초연구가 되는 것을 목표로 한다.

  • PDF

Implementation of Automatic Coin Sorting Smart Piggy Bank using Deep Learning based Image Recognition Technology (딥러닝 기반 이미지 인식 기술을 활용한 동전 자동분류 스마트 저금통)

  • Yu, Yeon Seung;Jang, Young Jin;Sim, Hyeon Jeong;Lee, Seul Bi;Kim, Cheong Ghil
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.320-322
    • /
    • 2020
  • 기계학습은 인공지능의 한 클래스로 최근 이미지 및 음성인식, 지능적 웹 검색, 자율 주행 자동차 등의 영역에서 성공적 발전을 바탕으로 우리의 일상에 폭넓게 이용되고 있다. 본 논문에서는 Keras 오픈소스 라이브러리를 이용해 딥러닝을 이용한 기계학습 기반의 동전 인식 소프트웨어를 구현하였고, 이를 이용해 동전 자동분류 스마트 저금통을 설계하였다. 동작 검증을 위하여 스마트 저금통의 모든 발생 이벤트는 Parse-server와 mongoDB를 이용하여 시각화 및 어플리케이션 및 웹사이트를 연결하였다.

Development of Deep Learning-Based House-Tree-Person Test Analysis Model (딥러닝 기반 집-나무-사람 검사 분석 모델의 개발)

  • Cho, Seung-Je;Cho, Geon-Woo;Kim, Young-wook
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.558-561
    • /
    • 2021
  • 심리학에서 사람의 심리 상태를 알아보기 위해 사용되는 검사 방법 중, 집-나무-사람 검사(HTP Test)는 피실험자가 그린 집, 나무, 사람을 포함하는 그림을 사용하여 피실험자의 심리를 분석하는 투영 검사법이다. 본 논문에서는 딥러닝 모델을 이용해 HTP Test 에 사용되는 그림을 분석하는 시스템을 제안하며, 성능 평가를 통해 심리학에서의 딥러닝 모델 적용 가능성을 확인한다. 또한 그림 데이터 분석에 적합한 사전 훈련 모델을 개발하기 위해, ImageNet 과 스케치 데이터셋으로 사전 훈련하여 성능을 비교한다. 본 논문에서 제안하는 시스템은 크게 감정 분석을 위한 이미지 객체 추출부, 추출된 객체로 피실험자의 감정을 분류하는 감정 분류부로 구성되어 있다. 객체 추출과 이미지 분류 모두 CNN(Convolution Neural Network) 기반의 딥러닝 모델을 사용하며, 이미지 분류 모델은 서로 다른 데이터셋으로 모델을 사전 훈련한 후, 훈련 데이터셋으로 전이 학습하여 모델의 성능을 비교한다. 그림 심리 분석을 위한 HTP test 스케치 데이터셋은, HTP Test 와 동일하게 피실험자가 3 개 클래스의 집, 나무, 사람의 그림을 그려 자체 수집하였다.

Experiment and Analysis for Deep Learning based Phase-Only Hologram Super-Resolution (딥러닝 기반의 고해상도 위상 홀로그램 획득을 위한 실험 및 분석)

  • Kim, Woosuk;Kang, Ji-Won;Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.325-326
    • /
    • 2020
  • 고해상도의 홀로그램을 얻기 위한 다양한 연구가 지속되고 있다. 본 논문은 고해상도의 위상 홀로그램을 획득하기 위하여 딥러닝 기반의 학습과 복원 결과를 가지고 분석을 진행한다. 사용된 위상 홀로그램은 보편적인 이미지와 값의 범위가 동일하다. SISR(Single Image Super Resolution)에서 좋은 결과를 보인 네트워크를 사용하여 위상 홀로그램에 대한 학습을 진행하였다. 네트워크로 획득한 홀로그램과 원본 홀로그램의 복원 결과를 비교하여, 차이점과 개선해야할 것들에 대해서 심도 있게 분석한다.

  • PDF

Convolutional Neural Network-based Iris Lesion Classification Algorithm (CNN기반 알츠하이머 치매 중증도 판별 알고리즘 오차 검증)

  • Kim, June-Gyeom;Seo, Jin-Beom;Cho, Young-Bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.100-101
    • /
    • 2021
  • In Korea, which has entered an aging society, 87% of the elderly population suffers from chronic diseases such as dementia and stroke, of which Alzheimer's dementia accounts for 71.3% of all dementia. In this paper, labeling verification was performed to review the error problem of deep learning results divided by Alzheimer's dementia MRI image into three stages.

  • PDF

Proposal of a Black Ice Detection Method Using Infrared Camera and YOLO for Reducing of Traffic Accidents (교통사고 경감을 위한 적외선 카메라와 YOLO를 사용한 블랙아이스 탐지 방법 제안)

  • Kim, Hyunggyun;Jang, Minseok;Lee, Yonsik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.416-421
    • /
    • 2021
  • In case of the road slips due to heavy snow and the temperature drops below 0 degrees, black ice which mainly occurs on the road, bridges for vehicles, and tunnel entrances, is not recognized by the driver's view because the image of the asphalt is transmitted through it. So cars' slip situation occurs, which leads to a big traffic accident and a large amount of loss of life and property. This study proposes a method to check the road condition using an infrared camera and to identify black ice through deep learning.

  • PDF

Pediatric RDS classification method employing segmentation-based deep learning network (영역 분할 기반 심층 신경망을 활용한 소아 RDS 판별 방법)

  • Kim, Jiyeong;Kang, Jaeha;Choi, Haechul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1181-1183
    • /
    • 2022
  • 신생아 호흡곤란증후군(RDS, Respiratory Distress Syndrome)은 미숙아 사망의 주된 원인 중 하나이며, 이 질병은 빠른 진단과 치료가 필요하다. 소아의 x-ray 영상을 시각적으로 분석하여 RDS 의 판별을 하고 있으나, 이는 전문의의 주관적인 판단에 의지하기 때문에 상당한 시간적 비용과 인력이 소모된다. 이에 따라, 본 논문에서는 전문의의 진단을 보조하기 위해 심층 신경망을 활용한 소아 RDS/nonRDS 판별 방법을 제안한다. 소아 전신 X-ray 영상에 폐 영역 분할을 적용한 데이터 세트와 증강방법으로 추가한 데이터 세트를 구축하며, RDS 판별 성능을 높이기 위해 ImageNet 으로 사전학습된 DenseNet 판별 모델에 대해 구축된 데이터 세트로 추가 미세조정 학습을 수행한다. 추론 시 입력 X-ray 영상에 대해 MSRF-Net 으로 분할된 폐 영역을 얻고 이를 DenseNet 판별 모델에 적용하여 RDS 를 진단한다. 실험결과, 데이터 증강과 폐 영역을 분할을 적용한 판별 방법이 소아전신 X-ray 데이터 세트만을 사용하는 것과 비교하여 3.9%의 성능향상을 보였다.

  • PDF

CCTV Image Quality Enhancement using Histogram Loss and Sequential Task (히스토그램 손실함수와 순차적 작업을 이용한 CCTV 영상 화질 향상)

  • Jeong, Minkyo;Choi, Jongin;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.217-220
    • /
    • 2022
  • 본 논문에서는 CCTV 영상 화질을 향상하고 해상도를 높이기 위해 딥 러닝(Deep Learning)을 이용하여 잡음 제거(Denoising) 와 초해상도(Super-resolution) 작업을 수행한다. 데이터 증강(Data Augmentation)을 통한 초해상도 성능 향상을 위해서 잡음 제거 네트워크의 출력 영상을 초해상도 네트워크의 입력으로 사용하는 순차적 작업을 사용한다. 또한 딥 러닝을 이용한 영상처리에서 발생하는 평균 밝기 오차 문제를 해결하기 위한 손실함수(Loss Function)와 두 가지 이상의 순차적인 딥 러닝 작업에서 발생하는 문제점을 극복하기 위한 손실함수를 제안한다. 제안하는 손실함수는 네트워크의 출력 영상과 타겟 영상의 밝기 오차를 줄이는 것이 가능하고, 순차적 작업에서 보다 정확한 모델 성능 판단이 가능하다.

  • PDF