• Title/Summary/Keyword: Image co-registration

Search Result 49, Processing Time 0.019 seconds

Impact Analysis of Buildings for KOMPSAT-3 Image Co-registration (KOMPSAT-3 위성영상의 상대기하보정에 대한 건물의 영향 분석)

  • Park, Jueon;Kim, Taeheon;Yun, Yerin;Lee, Chabin;Lee, Jinmin;Lee, Changno;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.293-304
    • /
    • 2022
  • In this study, to analyze the effect of buildings on the image co-registration performance, co-registration results are compared according to the presence or absence of matching points extracted from buildings. To remove the matching points extracted from buildings, a building mask generated by extracting building objects from the digital topographic map was used. In addition, matching points extraction performance and image co-registration accuracy were analyzed according to the magnitude of the convergence angle. Image co-registration results were compared by applying the affine and piecewise linear transformation models, respectively. According to the experimental results, the affine transformation model showed an overall improvement in accuracy after removing the matching points extracted from buildings. On the other hand, the piecewise linear transformation model improved the accuracy at the checkpoints including the surrounding buildings, but the accuracy improvement was not significant at checkpoints in the flat area without the existence of buildings. In addition, when the piecewise linear transformation model was applied, stable accuracy of less than 2 pixels was derived from images with a convergence angle of 20° or less.

Automatic Co-registration of Cloud-covered High-resolution Multi-temporal Imagery (구름이 포함된 고해상도 다시기 위성영상의 자동 상호등록)

  • Han, You Kyung;Kim, Yong Il;Lee, Won Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.101-107
    • /
    • 2013
  • Generally the commercial high-resolution images have their coordinates, but the locations are locally different according to the pose of sensors at the acquisition time and relief displacement of terrain. Therefore, a process of image co-registration has to be applied to use the multi-temporal images together. However, co-registration is interrupted especially when images include the cloud-covered regions because of the difficulties of extracting matching points and lots of false-matched points. This paper proposes an automatic co-registration method for the cloud-covered high-resolution images. A scale-invariant feature transform (SIFT), which is one of the representative feature-based matching method, is used, and only features of the target (cloud-covered) images within a circular buffer from each feature of reference image are used for the candidate of the matching process. Study sites composed of multi-temporal KOMPSAT-2 images including cloud-covered regions were employed to apply the proposed algorithm. The result showed that the proposed method presented a higher correct-match rate than original SIFT method and acceptable registration accuracies in all sites.

Fine Co-registration Performance of KOMPSAT-3·3A Imagery According to Convergence Angles (수렴각에 따른 KOMPSAT-3·3A호 영상 간 정밀 상호좌표등록 결과 분석)

  • Han, Youkyung;Kim, Taeheon;Kim, Yeji;Lee, Jeongho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.491-498
    • /
    • 2019
  • This study analyzed how the accuracy of co-registration varies depending on the convergence angles between two KOMPSAT-3·3A images. Most very-high-resolution satellite images provide initial coordinate information through metadata. Since the search area for performing image co-registration can be reduced by using the initial coordinate information, in this study, the mutual information method showing high matching reliability in the small search area is used. Initial coarse co-registration was performed by using multi-spectral images with relatively low resolution, and precise fine co-registration was conducted centering on the region of interest of the panchromatic image for more accurate co-registration performance. The experiment was conducted by 120 combination of 16 KOMPSAT-3·3A 1G images taken in Daejeon area. Experimental results show that a correlation coefficient between the convergence angles and fine co-registration errors was 0.59. In particular, we have shown the larger the convergence angle, the lower the accuracy of co-registration performance.

Image Registration of Aerial Image Sequences (연속 항공영상에서의 Image Registration)

  • 강민석;김준식;박래홍;이쾌희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.4
    • /
    • pp.48-57
    • /
    • 1992
  • This paper addresses the estimation of the shift vector from aerial image sequences. The conventional feature-based and area-based matching methods are simulated for determining the suitable image registration scheme. Computer simulations show that the feature-based matching schemes based on the co-occurrence matrix, autoregressive model, and edge information do not give a reliable matching for aerial image sequences which do not have a suitable statistical model or significant features. In area-based matching methods we try various similarity functions for a matching measure and discuss the factors determining the matching accuracy. To reduce the estimation error of the shift vector we propose the reference window selection scheme. We also discuss the performance of the proposed algorithm based on the simulation results.

  • PDF

Evaluation of Magnetic Resonance Imaging using Image Co-registration in Stereotactic Radiosurgery (정위방사선수술시 영상공동등록을 이용한 자기공명영상 유용성 평가)

  • Jin, Seongjin;Cho, Jihwan;Park, Cheolwoo
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.235-240
    • /
    • 2017
  • The purpose of this study is to confirm the safety of the clinical application of image co - registration in steteotactic radiosurgery by evaluating the 3D positioning of magnetic resonance imaging using image co-registration. We performed a retrospective study using three-dimensional coordinate measurement of 32 patients who underwent stereotactic radiosurgery and performed magnetic resonance imaging follow-up using image co-registration. The 3 dimensional coordinate errors were $1.0443{\pm}0.5724mm$ (0.10 ~ 1.89) in anterior commissure and $1.0348{\pm}0.5473mm$ (0.36 ~ 2.24) in posterior commissure. The mean error of MR1 (3.0 T) was lower than that of MR2 (1.5 T). It is necessary to minimize the error of magnetic resonance imaging in the treatment planning using the image co - registration technique and to confirm it.

Automatic Global Registration for Terrestrial Laser Scanner Data (지상레이저스캐너 데이터의 자동 글로벌 보정)

  • Kim, Chang-Jae;Eo, Yang-Dam;Han, Dong-Yeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.281-287
    • /
    • 2010
  • This study compares transformation algorithms for co-registration of terrestrial laser scan data. Pair-wise transformation which is used for transformation of scan data from more than two different view accumulates errors. ICP algorithm commonly used for co-registration between scan data needs initial geometry information. And it is difficult to co-register simultaneously because of too many control points when managing scan at the same time. Therefore, this study perform global registration technique using matching points. Matching points are extracted automatically from intensity image by SIFT and global registration is performed using GP analysis. There are advantages for operation speed, accuracy, automation in suggested global registration algorithm. Through the result from it, registration algorithms can be developed by considering accuracy and speed.

Co-registration Between PAN and MS Bands Using Sensor Modeling and Image Matching (센서모델링과 영상매칭을 통한 PAN과 MS 밴드간 상호좌표등록)

  • Lee, Chang No;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.13-21
    • /
    • 2021
  • High-resolution satellites such as Kompsat-3 and CAS-500 include optical cameras of MS (Multispectral) and PAN (Panchromatic) CCD (Charge Coupled Device) sensors installed with certain offsets. The offsets between the CCD sensors produce geometric discrepancy between MS and PAN images because a ground target is imaged at slightly different times for MS and PAN sensors. For precise pan-sharpening process, we propose a co-registration process consisting the physical sensor modeling and image matching. The physical sensor model enables the initial co-registration and the image matching is carried out for further refinement. An experiment with Kompsat-3 images produced RMSE (Root Mean Square Error) 0.2pixels level of geometric discrepancy between MS and PAN images.

Automated Geo-registration for Massive Satellite Image Processing

  • Heo, Joon;Park, Wan-Yong;Bang, Soo-Nam
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.345-349
    • /
    • 2005
  • Massive amount of satellite image processing such asglobal/continental-level analysis and monitoring requires automated and speedy georegistration. There could be two major automated approaches: (1) rigid mathematical modeling using sensor model and ephemeris data; (2) heuristic co-registration approach with respect to existing reference image. In case of ETM+, the accuracy of the first approach is known as RMSE 250m, which is far below requested accuracy level for most of satellite image processing. On the other hands, the second approach is to find identical points between new image and reference image and use heuristic regression model for registration. The latter shows better accuracy but has problems with expensive computation. To improve efficiency of the coregistration approach, the author proposed a pre-qualified matching algorithm which is composed of feature extraction with canny operator and area matching algorithm with correlation coefficient. Throughout the pre-qualification approach, the computation time was significantly improved and make the registration accuracy is improved. A prototype was implemented and tested with the proposed algorithm. The performance test of 14 TM/ETM+ images in the U.S. showed: (1) average RMSE error of the approach was 0.47 dependent upon terrain and features; (2) the number average matching points were over 15,000; (3) the time complexity was 12 min per image with 3.2GHz Intel Pentium 4 and 1G Ram.

  • PDF

Automated Satellite Image Co-Registration using Pre-Qualified Area Matching and Studentized Outlier Detection (사전검수영역기반정합법과 't-분포 과대오차검출법'을 이용한 위성영상의 '자동 영상좌표 상호등록')

  • Kim, Jong Hong;Heo, Joon;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.687-693
    • /
    • 2006
  • Image co-registration is the process of overlaying two images of the same scene, one of which represents a reference image, while the other is geometrically transformed to the one. In order to improve efficiency and effectiveness of the co-registration approach, the author proposed a pre-qualified area matching algorithm which is composed of feature extraction with canny operator and area matching algorithm with cross correlation coefficient. For refining matching points, outlier detection using studentized residual was used and iteratively removes outliers at the level of three standard deviation. Throughout the pre-qualification and the refining processes, the computation time was significantly improved and the registration accuracy is enhanced. A prototype of the proposed algorithm was implemented and the performance test of 3 Landsat images of Korea. showed: (1) average RMSE error of the approach was 0.435 pixel; (2) the average number of matching points was over 25,573; (3) the average processing time was 4.2 min per image with a regular workstation equipped with a 3 GHz Intel Pentium 4 CPU and 1 Gbytes Ram. The proposed approach achieved robustness, full automation, and time efficiency.

RNCC-based Fine Co-registration of Multi-temporal RapidEye Satellite Imagery (RNCC 기반 다시기 RapidEye 위성영상의 정밀 상호좌표등록)

  • Han, Youkyung;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.581-588
    • /
    • 2018
  • The aim of this study is to propose a fine co-registration approach for multi-temporal satellite images acquired from RapidEye, which has an advantage of availability for time-series analysis. To this end, we generate multitemporal ortho-rectified images using RPCs (Rational Polynomial Coefficients) provided with RapidEye images and then perform fine co-registration between the ortho-rectified images. A DEM (Digital Elevation Model) extracted from the digital map was used to generate the ortho-rectified images, and the RNCC (Registration Noise Cross Correlation) was applied to conduct the fine co-registration. Experiments were carried out using 4 RapidEye 1B images obtained from May 2015 to November 2016 over the Yeonggwang area. All 5 bands (blue, green, red, red edge, and near-infrared) that RapidEye provided were used to carry out the fine co-registration to show their possibility of being applicable for the co-registration. Experimental results showed that all the bands of RapidEye images could be co-registered with each other and the geometric alignment between images was qualitatively/quantitatively improved. Especially, it was confirmed that stable registration results were obtained by using the red and red edge bands, irrespective of the seasonal differences in the image acquisition.