이 논문은 웹 문서의 이미지 캡션 추출을 위한 방법으로서 이미지와 캡션의 위치적 연관성과 본문과 캡션의 어휘적 유사성을 동시에 고려한 방법을 제안한다. 이미지와 캡션의 위치적 연관성은 거리와 방향 관점에서 캡션이 이미지에 상대적으로 어떻게 위치하고 있는지를 나타내며, 본문과 캡션의 어휘적 유사성은 이미지를 설명하고 있는 캡션이 어휘적으로 본문과 어느 정도 유사한지를 나타낸다. 이미지와 캡션을 독립적으로 고려한 자질만을 사용한 캡션 추출 방법을 기저 방법으로 놓고 제안하는 방법들을 추가적인 자질로 사용하여 캡션을 추출하였을 때, 캡션 추출 정확률과 캡션 추출 재현율이 모두 향상되며, 캡션 추출 F-measure가 약 28% 향상되었다.
Conventional caption extraction methods use the difference between frames or color segmentation methods from the whole image. Because these methods depend heavily on heuristics, we should have a priori knowledge of the captions to be extracted. Also they are difficult to implement. In this paper, we propose a method that uses little heuristics and simplified algorithm. We use topographical features of characters to extract the character points and use KMST(Kruskal minimum spanning tree) to extract the candidate regions for captions. Character regions are determined by testing several conditions and verifying those candidate regions. Experimental results show that the candidate region extraction rate is 100%, and the character region extraction rate is 98.2%. And then we can see the results that caption area in complex images is well extracted.
자막 문자는 시청자의 이해를 돕기 위하여 제작된 비디오 영상에 종종 삽입한다. 영화의 경우 영상과 자막과 영상의 트랙이 달라 자막 교환이 영상에 손실을 주지 않고 이루어 질 수 있다. 자막이 삽입된 비디오 영상의 경우, 기존의 자막 교환 방법은 자막이 존재하는 부분 박스 형태로 일정 영역을 색칠한 후 그위에 새로운 자막을 삽입한다. 이러한 자막 교환 방법은 문자 영역을 포함한 주변 영역의 원영상의 손실을 초래함으로써 시청자에 시청의 불편을 초래하는 문제가 있다. 본 논문에서는 기존 방법의 문제점을 해결하기 위한 효과적인 자막 교환 방법을 제안하고자 한다 효과적인 교환 방법은 자막 영역을 원영상으로 복원한 복원된 문자 영역에 교환될 문자를 삽입하는 방법이다. 실험결과 대부분 자막이 복원이 잘 되어 효과적인 자막 교환이 이루어짐을 볼 수 있었다. 일부 복잡한 영상의 경우 복원 결과 약간의 왜곡 현상은 보여주나 왜곡된 위치에 새로운 자막을 삽입은 복원의 오류를 보완하는 역할을 함으로써 자연스런 자막 교환이 이루어짐을 볼 수 있었다.
디지털 비디오 영상을 효과적으로 색인하고 검색하기 위해서 비디오의 내용을 함축적으로 표현하고 있는 비디오 자막을 추출하여 인식하는 연구가 필요하다. 본 논문에서는 압축되지 않은 비디오 영화 영상에 인위적으로 삽입한 한글 및 영어 자막을 대상으로 자막 영역을 추출하고, 추출된 자막 이미지를 향상시키는 방법을 제안한다. 제안한 방법의 특징은 동일한 내용의 자막을 갖는 프레임들의 위치를 자동으로 찾아서 동일 자막 프레임들을 다중 결합하여 배경에 포함되어 있는 잡영의 일부 또는 전부를 우선 제거한다. 또한, 이 결과 이미지에 해상도 중대, 히스토그램 평활화, 획 기반 이진화, 스무딩의 이미지 향상 방법을 단계적으로 적용하여 인식 가능한 수준의 이미지로 향상시킨다. 제안한 방법을 비디오 영상에 적용하여 동일한 내용의 자막 그룹 단위로 자막 이미지를 추출하는 것이 가능해졌으며, 잡영이 제거되고 복잡한 자소의 획이 보존된 자막 이미지를 추출할 수 있었다. 동일한 내용의 자막 프레임의 시작 및 글위치를 파악하는 것은 비디오 영상의 색인과 검색에 유용하게 활용될 수 있다. 한글 및 영어 비디오 영화 자막에 제안한 방법을 적용하여 향상된 문자 인식 결과를 얻었다.
오늘날 저작권 관련 산업이 사회, 경제적으로 큰 영향을 미치는 대규모 산업으로 성장하였음에도 불구하고 저작물에 대한 소유권 및 저작권에 대한 문제가 끊임없이 발생하고 있으며 특히 이미지 저작권과 관련된 연구는 거의 진행되지 않는 상태이다. 본 연구에서는 기존의 문서 영상처리 기술과 딥 러닝 기술을 융합하여 교육용 도서 영상에서의 객체 자동 추출 및 분류 기술 시스템을 제안한다. 제안된 기술은 먼저 잡음을 제거한 후, 시각적 주의(visual attention) 기반 영역 추출 과정을 수행한다. 추출된 영역을 기반으로 블록화 작업을 수행하고, 각 블록을 그림인지 아니면 문자 영역인지를 분류한다. 마지막으로 추출된 그림 영역 주위를 검색하여 캡션 영역을 추출한다. 본 연구에서 진행한 성능 평가 결과, 그림 영역은 최대 97% 정확도를 보이며, 그림 및 캡션 영역 추출에 있어서는 평균 83%의 정확도를 보여 준다.
비디오 영상에 포함되어 있는 자막은 비디오의 내용을 함축적으로 표현하고 있기 때문에 비디오 색인 및 검색에 중요하게 사용될 수 시다. 본 논문에서는 뉴스 비디오로부터 폰트, 색상, 자막의 크기 등과 같은 사전 지식 없이도 자막을 효율적으로 추출하여 인식하는 방법을 제안한다. 문자 영역의 추출과정에서 문자영역은 뉴스 비디오의 여러 프레임에 걸쳐나 나오기 때문에 인길 프레임의 차영상을 통해서 동일한 자막 영역이 존재하는 프레임을 자동적으로 추출한 후, 이들의 시간적 평균영상을 만들어 인식에 사용함으로써 인식률을 향상한다. 또한, 평균 영상의 외각선 영상을 수평, 수직방향으로 투영한 값을 통해 문자 영역을 찾아 Region filling, K-means clustering을 적용하여 배경들을 완벽하게 제거함으로써 최종적인 자막 영상을 추출한다. 자막 인식과정에서는 문사 영역 추출과정에서 추출된 글자영상을 사용하여 white run, zero-one transition과 같은 비교적 간단한 특징 값을 추출하여 이를 비교함으로써 인식과정을 수행한다. 제한된 방법을 다양한 뉴스 비디오에 적용하여 문자영역 추출 능력과 인식률을 측정한 결과 우수함을 확인하였다.
Popular methods for extracting a text region in video images are in general based on analysis of a whole image such as merge and split method, and comparison of two frames. Thus, they take long computing time due to the use of a whole image. Therefore, this paper suggests the faster method of extracting a text region without processing a whole image. The proposed method uses line sampling methods, FFT and neural networks in order to extract texts in real time. In general, text areas are found in the higher frequency domain, thus, can be characterized using FFT The candidate text areas can be thus found by applying the higher frequency characteristics to neural network. Therefore, the final text area is extracted by verifying the candidate areas. Experimental results show a perfect candidate extraction rate and about 92% text extraction rate. The strength of the proposed algorithm is its simplicity, real-time processing by not processing the entire image, and fast skipping of the images that do not contain a text.
기존의 문자 영역 추출 방법은 전체 영상으로부터 컬러 영역 분할이나 프레임 차 방법을 이용하였다. 이들 방법은 휴리스틱에 많이 의존하므로 추출하려는 문자의 사전 정보를 가지고 있어야한다는 점과 구현에 많은 어려움이 존재한다. 본 논문에서는 휴리스틱한 부분을 줄이고 알고리즘을 단순화한 방법을 제안하고자 한다 문자의 지형학적 특징점을 추출하고 이 점들을 MST(Minimum Spanning Tree)를 형성하여 문자의 후보 영역을 추출한다. 문자 영역을 후보 영역의 검증을 통하여 추출한다. 실험 결과 문자의 후보 영역 추출율은 100%이었으며 최종 문자 영역 추출율은 98.2%이었다. 또한 복잡한 영상에서 존재하는 문자 영역도 잘 추출됨을 볼 수 있다.
본 논문에서는 비디오에서 입력된 영상으로부터 내용기반 검색을 위해 자동으로 자막을 추출하여 특징 추출을 기반의 단층 연결 신경망 인식기(FE-MCBP)에 의해 자막 문자를 인식하여 영상 자막의 내용을 검출하는 방법을 제시하였다. 비디오에서 자막 추출은 먼저, 비디오에서 일정한 시간 간격으로 획득한 프레임 중에서 히스토그램 분석을 통하여 키 프레임을 찾는 과정을 수행하며, 그 다음에 각각의 키 프레임에 대하여 칼라 세그먼테이션 후 라인 검사 방법 통하여 자막 영역을 추출하도록 하였다. 마지막으로 추출된 자막영역에서 개별문자를 분리하였다. 본 연구에서는 칼라 히스토그램을 분석 후 지역 최대값을 이용하여 세그먼테이션 후 라인 검사를 수행함으로써 처리 속도와 자막영역 검출의 정확도를 개선하였다. 비디오에서 자막 추출은 비디오 정보를 멀티미디어 데이터베이스화하는 초기 단계로 추출된 자막은 바로 문자 인식기의 입력이 된다. 또한 인식된 자막정보는 데이터베이스로 구축되며 내용기반 검색 기법에 의해 검색되도록 하였다.
본 논문은 방송사별 각 장면의 중요한 내용의 성격을 갖고 있는 특징을 방송사별 뉴스 비디오에서 추출하기 위한 것이다. 추출하고자 하는 특징의 요소는 방송사 구별을 위한 방송사 아이콘과 각 장면의 대표적 성격을 갖고 있는 아이콘, 각 장면내의 주요 내용을 대표하는 정보인 자막의 문장 추출이다. 본 논문에서 제안하는 방법은, 비디오 프레임으로 입력되는 영상을 YIQ칼라 공간으로 전환한 뒤 히스토그램 평활화 방법을 이용하여 입력 영상의 영역 구분을 명확하게 한 후에, 영상의 에지를 추출하고 수직과 수평선에 기반한 에지 히스토그램의 비교에 의하여 원하는 특징을 추출하는 것이다. 또한 히스토그램 차이값에 의해서 선택된 키 프레임들 중에서 뉴스 아이콘을 추출하고 아이콘에 의하여 각 장면을 분할 할 수 있는 방법을 제안하였다. 본 논문에서는 칼라 히스토그램이나 웨이블릿, 또는 객체의 움직임에 기반한 복잡한 방법대신 에지 히스토그램 비교 방법을 사용하여, 알고리즘을 간소화함으로써 계산 시간을 단축하였으며 특징 추출에도 좋은 결과를 나타냈다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.