In this paper, we propose a new web image caption extraction method considering the positional relation between a caption and an image and the lexical similarity between a caption and the main text containing the caption. The positional relation between a caption and an image represents how the caption is located with respect to the distance and the direction of the corresponding image. The lexical similarity between a caption and the main text indicates how likely the main text generates the caption of the image. Compared with previous image caption extraction approaches which only utilize the independent features of image and captions, the proposed approach can improve caption extraction recall rate, precision rate and 28% F-measure by including additional features of positional relation and lexical similarity.
Journal of the Korea Society of Computer and Information
/
v.10
no.2
s.34
/
pp.97-104
/
2005
Caption texts frequently inserted in a manufactured video image for helping an understanding of the TV audience. In the movies. replacement of the caption texts can be achieved without any loss of an original image, because the caption texts have their own track in the films. To replace the caption texts in early methods. the new texts have been inserted the caption area in the video images, which is filled a certain color for removing established caption texts. However, the use of these methods could be lost the original images in the caption area, so it is a Problematic method to the TV audience. In this Paper, we propose a new method for replacing the caption text after recovering original image in the caption area. In the experiments. the results in the complex images show some distortion after recovering original images, but most results show a good caption text with the recovered image. As such, this new method is effectively demonstrated to replace the caption texts in video images.
Automatic generation of captions for an image is a very difficult task, due to the necessity of computer vision and natural language processing technologies. However, this task has many important applications, such as early childhood education, image retrieval, and navigation for blind. In this paper, we describe a Recurrent Neural Network (RNN) model for generating image captions, which takes image features extracted from a Convolutional Neural Network (CNN). We demonstrate that our models produce state of the art results in image caption generation experiments on the Flickr 8K, Flickr 30K, and MS COCO datasets.
We propose a realtime numeric caption recognition algorithm that automatically recognizes the numeric caption generated by computer graphics (CG) and displays the modified caption using the recognized resource only when a valuable numeric caption appears in the aimed specific region of the live sportscast scene produced by other broadcasting stations. We extract the mesh feature from the enhanced binary image as a feature vector after acquiring the sports broadcast scenes using a frame grabber in realtime and then recover the valuable resource from just a numeric image by perceiving the character using the neural network. Finally, the result is verified by the knowledge-based rule set designed for more stable and reliable output and is displayed on a screen as the converted CC caption serving our purpose. At present, we have actually provided the realtime automatic mile-to-kilometer caption conversion system taking up our algorithm f3r the regular Major League Baseball (MLB) program being broadcasted live throughout Korea over our nationwide network. This caption conversion system is able to automatically convert the caption in mile universally used in the United States into that in kilometer in realtime, which is familiar to almost Koreans, and makes us get a favorable criticism from the TV audience.
Knowledge-based numeric open caption recognition is proposed that can recognize numeric captions generated by character generator (CG) and automatically superimpose a modified caption using the recognized text only when a valid numeric caption appears in the aimed specific region of a live sportscast scene produced by other broadcasting stations. in the proposed method, mesh features are extracted from an enhanced binary image as feature vectors, then a valuable information is recovered from a numeric image by perceiving the character using a multiplayer perceptron (MLP) network. The result is verified using knowledge-based hie set designed for a more stable and reliable output and then the modified information is displayed on a screen by CG. MLB Eye Caption based on the proposed algorithm has already been used for regular Major League Base-ball (MLB) programs broadcast five over a Korean nationwide TV network and has produced a favorable response from Korean viewer.
Kim, So-Myung;Kwak, Sang-Shin;Choi, Yeong-Woo;Chung, Kyu-Sik
Journal of KIISE:Software and Applications
/
v.29
no.4
/
pp.235-247
/
2002
For an efficient indexing and retrieval of digital video data, research on video caption extraction and recognition is required. This paper proposes methods for extracting artificial captions from video data and enhancing their image quality for an accurate Hangul and English character recognition. In the proposed methods, we first find locations of beginning and ending frames of the same caption contents and combine those multiple frames in each group by logical operation to remove background noises. During this process an evaluation is performed for detecting the integrated results with different caption images. After the multiple video frames are integrated, four different image enhancement techniques are applied to the image: resolution enhancement, contrast enhancement, stroke-based binarization, and morphological smoothing operations. By applying these operations to the video frames we can even improve the image quality of phonemes with complex strokes. Finding the beginning and ending locations of the frames with the same caption contents can be effectively used for the digital video indexing and browsing. We have tested the proposed methods with the video caption images containing both Hangul and English characters from cinema, and obtained the improved results of the character recognition.
In this paper, we present a novel motion-compensated interpolation technique for non-moving caption region to prevent the block artifacts due to the failure of conventional block-based motion estimation algorithm on the block is consist of non-moving caption and moving object. Experimental results indicate good performance of the proposed scheme with significantly reduced block artifacts on image sequence that include non-moving caption. Also the proposed method is simple and adequate for hardware implementation.
Yanjinlkham Khurelchuluun;Zainab Shabir;Dong-Seok Lee;Gwi-Gon Kim
Journal of Industrial Convergence
/
v.21
no.11
/
pp.1-12
/
2023
With the recent explosive popularity of SNS, it is increasingly important to utilize SNS marketing, and in this process, the importance of image and caption order in SNS layout is also growing. This research aims to analyze the impact of SNS layouts (Image First vs. Caption First) on the user's attitude toward SNS shopping. A survey was conducted targeting 350 general public and college(graduate) students living in Daegu City and Gyeongbuk Province. The data was analyzed using PROCESS, regression analysis, and t-test by SPSS 21.0 program. The result of this study, it was confirmed that the Image First was more accessible than the Caption First. The Caption First was confirmed to be more diagnostic than the Image First. Moreover, from three specific mediation paths, only two were confirmed, named is through diagnosticity and usefulness, and through accessibility, diagnosticity, and usefullness. The path through diagnosticity and usefulness were stronger than another. Additionally, the impact of accessibility on diagnosticity was found to be higher when involvement was high rather than when involvement was low.
Conventional caption extraction methods use the difference between frames or color segmentation methods from the whole image. Because these methods depend heavily on heuristics, we should have a priori knowledge of the captions to be extracted. Also they are difficult to implement. In this paper, we propose a method that uses little heuristics and simplified algorithm. We use topographical features of characters to extract the character points and use KMST(Kruskal minimum spanning tree) to extract the candidate regions for captions. Character regions are determined by testing several conditions and verifying those candidate regions. Experimental results show that the candidate region extraction rate is 100%, and the character region extraction rate is 98.2%. And then we can see the results that caption area in complex images is well extracted.
Lee, Jun Hee;Lee, Soo Hwan;Tae, Soo Ho;Seo, Dong Hoan
Journal of Korea Multimedia Society
/
v.22
no.11
/
pp.1223-1232
/
2019
The injection is the input method of the image feature vector from the encoder to the decoder. Since the image feature vector contains object details such as color and texture, it is essential to generate image captions. However, the bidirectional decoder model using the existing injection method only inputs the image feature vector in the first step, so image feature vectors of the backward sequence are vanishing. This problem makes it difficult to describe the context in detail. Therefore, in this paper, we propose the parallel injection method to improve the description performance of image captions. The proposed Injection method fuses all embeddings and image vectors to preserve the context. Also, We optimize our image caption model with Bidirectional Gated Recurrent Unit (Bi-GRU) to reduce the amount of computation of the decoder. To validate the proposed model, experiments were conducted with a certified image caption dataset, demonstrating excellence in comparison with the latest models using BLEU and METEOR scores. The proposed model improved the BLEU score up to 20.2 points and the METEOR score up to 3.65 points compared to the existing caption model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.