• Title/Summary/Keyword: Image Translation

Search Result 319, Processing Time 0.032 seconds

Omnidirectional Camera Motion Estimation Using Projected Contours (사영 컨투어를 이용한 전방향 카메라의 움직임 추정 방법)

  • Hwang, Yong-Ho;Lee, Jae-Man;Hong, Hyun-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.35-44
    • /
    • 2007
  • Since the omnidirectional camera system with a very large field of view could take many information about environment scene from few images, various researches for calibration and 3D reconstruction using omnidirectional image have been presented actively. Most of line segments of man-made objects we projected to the contours by using the omnidirectional camera model. Therefore, the corresponding contours among images sequences would be useful for computing the camera transformations including rotation and translation. This paper presents a novel two step minimization method to estimate the extrinsic parameters of the camera from the corresponding contours. In the first step, coarse camera parameters are estimated by minimizing an angular error function between epipolar planes and back-projected vectors from each corresponding point. Then we can compute the final parameters minimizing a distance error of the projected contours and the actual contours. Simulation results on the synthetic and real images demonstrated that our algorithm can achieve precise contour matching and camera motion estimation.

A Novel Multi-focus Image Fusion Technique Using Directional Multiresolution Transform (방향성 다해상도 변환을 사용한 새로운 다중초점 이미지 융합 기법)

  • Park, Dae-Chul;Atole, Ronnel R.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.59-68
    • /
    • 2009
  • This paper addresses a hybrid multi-focus image fusion scheme using the recent curvelet transform constructions. Hybridization is obtained by combining the MS fusion rule with a novel "copy" method. The proposed scheme use MS rule to fuse the m most significant terms in spectrum of an image at each decomposition level. The scheme is dubbed in this work as m-term fusion in adherence to its use of the MSC (most significant coefficients) in the transform set at any given scale, orientation, and translation. We applied the edge-sensitive objective quality measure proposed by Xydeas and Petrovic to evaluate the method. Experimental results show that the proposed scheme is a potential alternative to the redundant, shift-invariant Dual-Tree Complex Wavelet transforms. In particular, it was confirmed that a 50% m-term fusion produces outputs with no visible quality degradation.

  • PDF

Image Translation: Verifiable Image Transformation Networks for Face Sketch-Photo and Photo-Sketch (영상변형:얼굴 스케치와 사진간의 증명가능한 영상변형 네트워크)

  • Sung, Thai-Leang;Lee, Hyo-Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.451-454
    • /
    • 2019
  • In this paper, we propose a verifiable image transformation networks to transform face sketch to photo and vice versa. Face sketch-photo is very popular in computer vision applications. It has been used in some specific official departments such as law enforcement and digital entertainment. There are several existing face sketch-photo synthesizing methods that use feed-forward convolution neural networks; however, it is hard to assure whether the results of the methods are well mapped by depending only on loss values or accuracy results alone. In our approach, we use two Resnet encoder-decoder networks as image transformation networks. One is for sketch-photo and another is for photo-sketch. They depend on each other to verify their output results during training. For example, using photo-sketch transformation networks to verify the photo result of sketch-photo by inputting the result to the photo-sketch transformation networks and find loss between the reversed transformed result with ground-truth sketch. Likely, we can verify the sketch result as well in a reverse way. Our networks contain two loss functions such as sketch-photo loss and photo-sketch loss for the basic transformation stages and the other two-loss functions such as sketch-photo verification loss and photo-sketch verification loss for the verification stages. Our experiment results on CUFS dataset achieve reasonable results compared with the state-of-the-art approaches.

CycleGAN-based Object Detection under Night Environments (CycleGAN을 이용한 야간 상황 물체 검출 알고리즘)

  • Cho, Sangheum;Lee, Ryong;Na, Jaemin;Kim, Youngbin;Park, Minwoo;Lee, Sanghwan;Hwang, Wonjun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.1
    • /
    • pp.44-54
    • /
    • 2019
  • Recently, image-based object detection has made great progress with the introduction of Convolutional Neural Network (CNN). Many trials such as Region-based CNN, Fast R-CNN, and Faster R-CNN, have been proposed for achieving better performance in object detection. YOLO has showed the best performance under consideration of both accuracy and computational complexity. However, these data-driven detection methods including YOLO have the fundamental problem is that they can not guarantee the good performance without a large number of training database. In this paper, we propose a data sampling method using CycleGAN to solve this problem, which can convert styles while retaining the characteristics of a given input image. We will generate the insufficient data samples for training more robust object detection without efforts of collecting more database. We make extensive experimental results using the day-time and night-time road images and we validate the proposed method can improve the object detection accuracy of the night-time without training night-time object databases, because we converts the day-time training images into the synthesized night-time images and we train the detection model with the real day-time images and the synthesized night-time images.

Log-Polar Image Watermarking based on Invariant Centroid as Template (불변의 무게중심을 템플릿으로 이용한 대수-극 좌표계 영상 워터마킹 기법)

  • 김범수;유광훈;김우섭;곽동민;송영철;최재각;박길흠
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.3
    • /
    • pp.341-351
    • /
    • 2003
  • Digital image watermarking is the method that can protect the copyright of the image by embedding copyright information, which is called watermark. Watermarking must have robustness to intentional or unintentional data changing, called attack. The conventional watermarking schemes are robust to waveform attacks such as image compression, filtering etc. However, they are vulnerable to geometrical attacks such as rotation, scaling, translation, and cropping. Accordingly, this paper proposes new watermarking scheme that is robust to geometrical attacks by using invariant centroid. Invariant centroid is the gravity center of a central area in a gray scale image that remains unchanged even when the image is attacked by RST including cropping and proposed scheme uses invariant centroids of original and inverted image as the template. To make geometrically invariant domain, template and angle compensated Log -Polar Map(LPM) is used. Then Discrete Cosine Transform(DCT) is performed and the watermark is embedded into the DCT coefficients. Futhermore, to prevent a watermarked image from degrading due to interpolation during coordinate system conversion, only the image of the watermark signal is extracted and added to the original image. Experimental results show that the proposed scheme is especially robust to RST attacks including cropping.

3D Model Retrieval Using Sliced Shape Image (단면 형상 영상을 이용한 3차원 모델 검색)

  • Park, Yu-Sin;Seo, Yung-Ho;Yun, Yong-In;Kwon, Jun-Sik;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.27-37
    • /
    • 2008
  • Applications of 3D data increase with advancement of multimedia technique and contents, and it is necessary to manage and to retrieve for 3D data efficiently. In this paper, we propose a new method using the sliced shape which extracts efficiently a feature description for shape-based retrieval of 3D models. Since the feature descriptor of 3D model should be invariant to translation, rotation and scale for its model, normalization of models requires for 3D model retrieval system. This paper uses principal component analysis(PCA) method in order to normalize all the models. The proposed algorithm finds a direction of each axis by the PCA and creates orthogonal n planes in each axis. These planes are orthogonalized with each axis, and are used to extract sliced shape image. Sliced shape image is the 2D plane created by intersecting at between 3D model and these planes. The proposed feature descriptor is a distribution of Euclidean distances from center point of sliced shape image to its outline. A performed evaluation is used for average of the normalize modified retrieval rank(ANMRR) with a standard evaluation from MPEG-7. In our experimental results, we demonstrate that the proposed method is an efficient 3D model retrieval.

Motion Compensated Subband Video Coding with Arbitrarily Shaped Region Adaptivity

  • Kwon, Oh-Jin;Choi, Seok-Rim
    • ETRI Journal
    • /
    • v.23 no.4
    • /
    • pp.190-198
    • /
    • 2001
  • The performance of Motion Compensated Discrete Cosine Transform (MC-DCT) video coding is improved by using the region adaptive subband image coding [18]. On the assumption that the video is acquired from the camera on a moving platform and the distance between the camera and the scene is large enough, both the motion of camera and the motion of moving objects in a frame are compensated. For the compensation of camera motion, a feature matching algorithm is employed. Several feature points extracted using a Sobel operator are used to compensate the camera motion of translation, rotation, and zoom. The illumination change between frames is also compensated. Motion compensated frame differences are divided into three regions called stationary background, moving objects, and newly emerging areas each of which is arbitrarily shaped. Different quantizers are used for different regions. Compared to the conventional MC-DCT video coding using block matching algorithm, our video coding scheme shows about 1.0-dB improvements on average for the experimental video samples.

  • PDF

Deep-Learning Approach for Text Detection Using Fully Convolutional Networks

  • Tung, Trieu Son;Lee, Gueesang
    • International Journal of Contents
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Text, as one of the most influential inventions of humanity, has played an important role in human life since ancient times. The rich and precise information embodied in text is very useful in a wide range of vision-based applications such as the text data extracted from images that can provide information for automatic annotation, indexing, language translation, and the assistance systems for impaired persons. Therefore, natural-scene text detection with active research topics regarding computer vision and document analysis is very important. Previous methods have poor performances due to numerous false-positive and true-negative regions. In this paper, a fully-convolutional-network (FCN)-based method that uses supervised architecture is used to localize textual regions. The model was trained directly using images wherein pixel values were used as inputs and binary ground truth was used as label. The method was evaluated using ICDAR-2013 dataset and proved to be comparable to other feature-based methods. It could expedite research on text detection using deep-learning based approach in the future.

Image Watermarking Robust to Rotation, Scale and Translation Distortion (RST변환에 강인한 이미지 워터마킹 방법)

  • Choo, Hyon-Gon;Lim, Sam;Kim, Whoi-Yul
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.209-212
    • /
    • 2001
  • 오늘날, 디지털 워터마크에 대하여 기하학적 변환에 대한 강인성이 요구되고 있다. 본 논문에서는 회전, 이동 및 크기변화에 강인한 워터마킹 방법을 제안한다. 영상의 푸리에 변환 계수를 이용하여 이동에 대한 강인한 속성을 가지도록 하며, 입력 마스크의 상호 관계가 회전, 크기 변화에 강인하도록 워터마크 마스크를 생성한 후 영상에 삽입한다. 삽입된 워터마크의 검출은 영상의 주파수 영역의 radial projection 에 대한 워터마크 신호의 상관도를 이용하여 검출한다. 실험을 통하여 제안된 방법이 여러 가지 기하학적 변환에 강인함을 보여준다.

  • PDF

The Optimal Bispectral Feature Vectors and the Fuzzy Classifier for 2D Shape Classification

  • Youngwoon Woo;Soowhan Han;Park, Choong-Shik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.421-427
    • /
    • 2001
  • In this paper, a method for selection of the optimal feature vectors is proposed for the classification of closed 2D shapes using the bispectrum of a contour sequence. The bispectrum based on third order cumulants is applied to the contour sequences of the images to extract feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to represent two-dimensional planar images, but there is no certain criterion on the selection of the feature vectors for optimal classification of closed 2D images. In this paper, a new method for selecting the optimal bispectral feature vectors based on the variances of the feature vectors. The experimental results are presented using eight different shapes of aircraft images, the feature vectors of the bispectrum from five to fifteen and an weighted mean fuzzy classifier.

  • PDF