• Title/Summary/Keyword: Image Technology

Search Result 9,469, Processing Time 0.037 seconds

Development of Inquiry Activity Materials for Visualizing Typhoon Track using GK-2A Satellite Images (천리안 위성 2A호 영상을 활용한 태풍 경로 시각화 탐구활동 수업자료 개발)

  • Chae-Young Lim;Kyung-Ae Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.48-71
    • /
    • 2024
  • Typhoons are representative oceanic and atmospheric phenomena that cause interactions within the Earth's system with diverse influences. In recent decades, the typhoons have tended to strengthen due to rapidly changing climate. The 2022 revised science curriculum emphasizes the importance of teaching-learning activities using advanced science and technology to cultivate digital literacy as a citizen of the future society. Therefore, it is necessary to solve the temporal and spatial limitations of textbook illustrations and to develop effective instructional materials using global-scale big data covered in the field of earth science. In this study, according to the procedure of the PDIE (Preparation, Development, Implementation, Evaluation) model, the inquiry activity data was developed to visualize the track of the typhoon using the image data of GK-2A. In the preparatory stage, the 2015 and 2022 revised curriculum and the contents of the inquiry activities of the current textbooks were analyzed. In the development stage, inquiry activities were organized into a series of processes that can collect, process, visualize, and analyze observational data, and a GUI (Graphic User Interface)-based visualization program that can derive results with a simple operation was created. In the implementation and evaluation stage, classes were conducted with students, and classes using code and GUI programs were conducted respectively to compare the characteristics of each activity and confirm its applicability in the school field. The class materials presented in this study enable exploratory activities using actual observation data without professional programming knowledge which is expected to contribute to students' understanding and digital literacy in the field of earth science.

A Study on Design and Analysis of Module Control Method for Extended Use of Rechargeable Batteries in Mobile Devices (모바일 장치의 충전식 배터리 사용 연장을 위한 모듈 제어 방법 설계와 해석 연구)

  • Dohyeong Kim;jihoon Ryu;JinPyo Jo;JeongHo Kim
    • Journal of Platform Technology
    • /
    • v.12 no.2
    • /
    • pp.34-44
    • /
    • 2024
  • This paper proposes a dynamic clock supply control algorithm and a system load power stabilization algorithm that minimizes the power consumption of the sensing system, which accounts for the largest percentage of power consumption in mobile devices, to extend the usage time of the rechargeable battery mounted on the mobile device. The dynamic clock supply control algorithm can reduce the power consumed by the sensing system by configuring a circuit to cut off the power of the sensing system and by recognizing the state of low sensor change and adjusting the measurement cycle. The system load power stabilization algorithm is an algorithm that controls the power of the surrounding module according to the power consumption state, and when it requires a lot of power, it controls the clock supply to stabilize the operation. The experimental results confirmed that applying only the dynamic clock supply control algorithm reduces the power consumed by the sensing system by 17%, and applying only the system load power stabilization algorithm reduces power consumption by 9.3%, enabling it to operate stably in situations that require a lot of power such as image processing. When both algorithms were applied, the power consumption of the battery was reduced by 67% compared to before applying the algorithm. Through this, the reliability of the proposed method was confirmed.

  • PDF

Application of Geo-Segment Anything Model (SAM) Scheme to Water Body Segmentation: An Experiment Study Using CAS500-1 Images (수체 추출을 위한 Geo-SAM 기법의 응용: 국토위성영상 적용 실험)

  • Hayoung Lee;Kwangseob Kim;Kiwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.343-350
    • /
    • 2024
  • Since the release of Meta's Segment Anything Model (SAM), a large-scale vision transformer generation model with rapid image segmentation capabilities, several studies have been conducted to apply this technology in various fields. In this study, we aimed to investigate the applicability of SAM for water bodies detection and extraction using the QGIS Geo-SAM plugin, which enables the use of SAM with satellite imagery. The experimental data consisted of Compact Advanced Satellite 500 (CAS500)-1 images. The results obtained by applying SAM to these data were compared with manually digitized water objects, Open Street Map (OSM), and water body data from the National Geographic Information Institute (NGII)-based hydrological digital map. The mean Intersection over Union (mIoU) calculated for all features extracted using SAM and these three-comparison data were 0.7490, 0.5905, and 0.4921, respectively. For features commonly appeared or extracted in all datasets, the results were 0.9189, 0.8779, and 0.7715, respectively. Based on analysis of the spatial consistency between SAM results and other comparison data, SAM showed limitations in detecting small-scale or poorly defined streams but provided meaningful segmentation results for water body classification.

The Old Future of Christian Education : Education for Shalom - Thoughts on UNESCO 2050 - (기독교교육의 오래된 미래 : 샬롬을 위한 교육 - UNESCO 교육의 미래 2050에 대한 소고 -)

  • Mikyoung Seo
    • Journal of Christian Education in Korea
    • /
    • v.76
    • /
    • pp.119-147
    • /
    • 2023
  • Purpose of study: The purpose of this study is to propose an education for biblical Shalom for the future of education in relation to UNESCO 2050. Research content and method: The education for Shalom is about experiencing Shalom in fellowship with God. Moreover, it expands that shalom into relationships with self, neighbors, the earth, and technology, and then helps achieving balance between Shalom and those mentioned above. In order to provide education for Shalom, this study presented five relational dimensions of experiencing Shalom. First, the joy of serving God and neighbors in a proper personal relationship with God is most important. Second, it is the joy of building a right community and living in it through harmonious relationships with neighbors. Third, it is the joy of living in a harmonious relationship with nature. Fourth, it is the joy of being respected for human rights that are dignified as the image of God and living while enjoying rights. Fifth, it is the joy of enjoying fair use and benefits from technological innovation without being alienated, excluded and treated unfairly, or receiving disadvantages. Based on that, a model of education for Shalom has been developed. Conclusions and Suggestions: The educational model for Shalom forms view of values, knowledge, and human nature through the Bible. It consists of learning strategies to maintain a balance between the form of knowledge and the five relational dimensions. This model has a structure that carries out education for Shalom while interacting with each other.

Analysis of Color Distortion in Hazy Images (안개가 포함된 영상에서의 색 왜곡 특성 분석)

  • JeongYeop Kim
    • Journal of Platform Technology
    • /
    • v.11 no.6
    • /
    • pp.68-78
    • /
    • 2023
  • In this paper, the color distortion in images with haze would be analyzed. When haze is included in the scene, the color signal reflected in the scene is accompanied by color distortion due to the influence of transmittance according to the haze component. When the influence of haze is excluded by a conventional de-hazing method, the distortion of color tends to not be sufficiently resolved. Khoury et al. used the dark channel priority technique, a haze model mentioned in many studies, to determine the degree of color distortion. However, only the tendency of distortion such as color error values was confirmed, and specific color distortion analysis was not performed. This paper analyzes the characteristic of color distortion and proposes a restoration method that can reduce color distortion. Input images of databases used by Khoury et al. include Macbeth color checker, a standard color tool. Using Macbeth color checker's color values, color distortion according to changes in haze concentration was analyzed, and a new color distortion model was proposed through modeling. The proposed method is to obtain a mapping function using the change in chromaticity by step according to the change in haze concentration and the color of the ground truth. Since the form of color distortion varies from step to step in proportion to the haze concentration, it is necessary to obtain an integrated thought function that operates stably at all stages. In this paper, the improvement of color distortion through the proposed method was estimated based on the value of angular error, and it was verified that there was an improvement effect of about 15% compared to the conventional method.

  • PDF

Image Classification of Thyroid Ultrasound Nodules using Machine Learning and GLCM (머신러닝과 GLCM을 이용하여 갑상샘 초음파영상의 결절분류에 관한 연구)

  • Ye-Na Jung;Soo-Young Ye
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.4
    • /
    • pp.317-325
    • /
    • 2024
  • This study aimed to classify normal and nodule images in thyroid ultrasound images using GLCM and machine learning. The research was conducted on 600 patients who visited S Hospital in Busan and were diagnosed with thyroid nodules using thyroid ultrasound. In the thyroid ultrasound images, the ROI was set to a size of 50x50 pixels, and 21 parameters and 4 angles were used with GLCM to analyze the normal thyroid patterns and thyroid nodule patterns. The analyzed data was used to distinguish between normal and nodule diagnostic results using the SVM model and KNN model in MATLAB. As a result, the accuracy of the thyroid nodule classification rate was 94% for SVM model and 91% for the KNN model. Both models showed an accuracy of over 90%, indicating that the classification rate is excellent when using machine learning for the classification of normal thyroid and thyroid nodules. In the ROC curve, the ROC curve for the SVM model was generally higher compared to the KNN model, indicating that the SVM model has higher within-sample performance than the KNN model. Based on these results, the SVM model showed high accuracy in diagnosing thyroid nodules. This result can be used as basic data for future research as an auxiliary tool for medical diagnosis and is expected to contribute to the qualitative improvement of medical services through machine learning technology.

Methodology for Generating UAV's Effective Flight Area that Satisfies the Required Spatial Resolution (요구 공간해상도를 만족하는 무인기의 유효 비행 영역 생성 방법)

  • Ji Won Woo;Yang Gon Kim;Jung Woo An;Sang Yun Park;Gyeong Rae Nam
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.400-407
    • /
    • 2024
  • The role of unmanned aerial vehicles (UAVs) in modern warfare is increasingly significant, making their capacity for autonomous missions essential. Accordingly, autonomous target detection/identification based on captured images is crucial, yet the effectiveness of AI models depends on image sharpness. Therefore, this study describes how to determine the field of view (FOV) of the camera and the flight position of the UAV considering the required spatial resolution. Firstly, the calculation of the size of the acquisition area is discussed in relation to the relative position of the UAV and the FOV of the camera. Through this, this paper first calculates the area that can satisfy the spatial resolution and then calculates the relative position of the UAV and the FOV of the camera that can satisfy it. Furthermore, this paper propose a method for calculating the effective range of the UAV's position that can satisfy the required spatial resolution, centred on the coordinate to be photographed. This is then processed into a tabular format, which can be used for mission planning.

The Effect of Hydroxyproline and Pro-Hyp Dipeptide on UV-damaged Skin of Hairless Mice (자외선에 의해 피부가 손상된 hairless mouse에서의 hydroxyproline, Pro-Hyp 경구반복투여시 피부 상태 개선 효과)

  • Lee, Ji-Hae;Seo, Jeong-Hye;Park, Young-Ho;Kim, Wan-Gi;Lim, Kyung-Min;Lee, Sang-Jun
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.436-442
    • /
    • 2008
  • Hydroxyproline and Pro-Hyp dipeptide are the digestive products of collagen hydrolysate called collagen peptide. Some suggested that collagen peptides could improve aged or damaged skins, however, the effects of collagen peptides on the skin have not been known. In this study, we investigated the effects of digestive products of collagen peptides, hydroxyproline and Pro-Hyp dipeptide on skin quality using the UV-damaged dorsal skin of hairless mouse as a model system. Female SKH hairless mice were pre-irradiated with UV for 7 weeks, and then hydroxyproline, Pro-Hyp dipeptide were orally administered for 7 weeks with UV irradiation. Wrinkle formation (by replica image), skin elasticity, barrier status (by TEWL, transepidermal water loss), epidermis thickness, and biophysical changes in the stratum comeum (by hematoxylin & eosin staining) were examined. With the oral peptide treatment, effects such as skin barrier maintenance, anti-skin thickening, and recovery of the stratum corneum were observed. These results indicate that oral intake of collagen peptides may have beneficial effects on damaged skin cells.

The Evaluation of TrueX Reconstruction Method in Low Dose (저선량에서의 TrueX 재구성 방법에 의한 유용성 평가)

  • Oh, Se-Moon;Kim, Kye-Hwan;Kim, Seung-Jeong;Lee, Hong-Jae;Kim, Jin-Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.83-87
    • /
    • 2011
  • Purpose: Recently in diagnostics area PET/CT is using a variety of areas including oncology, as well as in cardiology, neurology, etc. While increasing in the importance of PET/CT, there are various researches in the image quality related to reconstruction method. We compared and tested Iterative 2D Reconstruction Method with True X Reconstruction method by Siemens through phantom experiment, so we can see increasing of clinical usefulness of PET/CT. Materials and Methods: We measured contrast ratio and FWHM due to evaluating images on dose and experiment using Biograph 40 True Point PET/CT (Siemens, Germany). Getting a result of contrast ratio and FWHM, we used NEMA IEC PET body phantom (Data Spectrum Corp.) and capillary tube. We used the current TrueX and the previous Iterative 2D algorithm for all images which have 10 minutes long. Also, a clinical suitability of parameter for Iterative 2D and a recommended parameter by Siemens for True X are applied to the experiment. Results: We tested FWHM using capillary tube. As a result, TrueX was less than Iterative 2D. Also, the differences of FWHM get bigger in low dose. On the other hand, we tested contrasts ratio using NEMA IEC PET body phantom. As a result, TrueX was better aspect than Iterative 2D. However, there was no difference in dose. Conclusion: In this experiment, TrueX get higher results of contrast ratio and spatial resolution than Itertive 2D through experiment. Also, in the reconstruction result through TrueX, TrueX had better aspect of resolution than Iterative 2D in low dose. However, contrast ratio had no specific difference. In other words, TrueX reconstruction method in PET/CT had higher clinical value in use because TrueX can reduce exposure of patient and had a better quality of screen.

  • PDF

The Evaluation of Clinical Usefulness on Application of Myocardial Extract in Quantitative Perfusion SPECT (QPS 프로그램에서 Myocardial extract 적용에 따른 임상적 유용성 평가)

  • Yun, Jong-Jun;Lim, Yeong-Hyeon;Lee, Mu-Seok;Song, Hyeon-Seok;Jeong, Ji-Uk;Park, Se-Yun;Kim, Jae-Hwan;Kim, Jeong-Uk
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.88-93
    • /
    • 2011
  • Purpose: As to analytical method of data, the AutoQUANT software in which it is used quantitative rating of the myocardial perfusion SPECT are reported that there is a difference. Therefore the measured value error of the mutual program is expected to be generated even if the quantitative analysis is made data of the same patient. The purpose of this study is to offer the comparative analysis of myocardial extract method in Quantitative Perfusion SPECT. Materials and methods: We analyzed the 51 patients who were examined by Tc-99m MIBI gated myocardial SPECT in nuclear medicine department of Pusan National University Hospital from June to December 2010(34 men, 17 women, mean age $66.5{\pm}9.9$). We acquired the extracted image in myocardial extract protocol. QPS program that uses the AutoQUANT software measured TID(Transient Ischemic Dilation), ESD(Extent of Stress Defect), SSS(Summed Stress Score). Then analyzed the results. Results: The correlation of appyling myocardial extract is TID(r=0.98), ESD(r=0.99), SSS(r=0.99). In the 95% confidence limit, there was no satistically significant difference(TID p=0.78, ESD p=0.31, SSS p=0.19). After blinding test with a physician for making a qualitative analysis, there was no difference. Conclusion: Quantitative indices in QPS program showed good correlation and the results showed no statistically signigicant difference. The variance between method was small. therefore, the functional parameters by each method can be used interchangeably. Also, we expect patient's satisfaction.

  • PDF