• Title/Summary/Keyword: Image Style Transfer

Search Result 39, Processing Time 0.03 seconds

Makeup transfer by applying a loss function based on facial segmentation combining edge with color information (에지와 컬러 정보를 결합한 안면 분할 기반의 손실 함수를 적용한 메이크업 변환)

  • Lim, So-hyun;Chun, Jun-chul
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.35-43
    • /
    • 2022
  • Makeup is the most common way to improve a person's appearance. However, since makeup styles are very diverse, there are many time and cost problems for an individual to apply makeup directly to himself/herself.. Accordingly, the need for makeup automation is increasing. Makeup transfer is being studied for makeup automation. Makeup transfer is a field of applying makeup style to a face image without makeup. Makeup transfer can be divided into a traditional image processing-based method and a deep learning-based method. In particular, in deep learning-based methods, many studies based on Generative Adversarial Networks have been performed. However, both methods have disadvantages in that the resulting image is unnatural, the result of makeup conversion is not clear, and it is smeared or heavily influenced by the makeup style face image. In order to express the clear boundary of makeup and to alleviate the influence of makeup style facial images, this study divides the makeup area and calculates the loss function using HoG (Histogram of Gradient). HoG is a method of extracting image features through the size and directionality of edges present in the image. Through this, we propose a makeup transfer network that performs robust learning on edges.By comparing the image generated through the proposed model with the image generated through BeautyGAN used as the base model, it was confirmed that the performance of the model proposed in this study was superior, and the method of using facial information that can be additionally presented as a future study.

Few-Shot Content-Level Font Generation

  • Majeed, Saima;Hassan, Ammar Ul;Choi, Jaeyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1166-1186
    • /
    • 2022
  • Artistic font design has become an integral part of visual media. However, without prior knowledge of the font domain, it is difficult to create distinct font styles. When the number of characters is limited, this task becomes easier (e.g., only Latin characters). However, designing CJK (Chinese, Japanese, and Korean) characters presents a challenge due to the large number of character sets and complexity of the glyph components in these languages. Numerous studies have been conducted on automating the font design process using generative adversarial networks (GANs). Existing methods rely heavily on reference fonts and perform font style conversions between different fonts. Additionally, rather than capturing style information for a target font via multiple style images, most methods do so via a single font image. In this paper, we propose a network architecture for generating multilingual font sets that makes use of geometric structures as content. Additionally, to acquire sufficient style information, we employ multiple style images belonging to a single font style simultaneously to extract global font style-specific information. By utilizing the geometric structural information of content and a few stylized images, our model can generate an entire font set while maintaining the style. Extensive experiments were conducted to demonstrate the proposed model's superiority over several baseline methods. Additionally, we conducted ablation studies to validate our proposed network architecture.

A label-free high precision automated crack detection method based on unsupervised generative attentional networks and swin-crackformer

  • Shiqiao Meng;Lezhi Gu;Ying Zhou;Abouzar Jafari
    • Smart Structures and Systems
    • /
    • v.33 no.6
    • /
    • pp.449-463
    • /
    • 2024
  • Automated crack detection is crucial for structural health monitoring and post-earthquake rapid damage detection. However, realizing high precision automatic crack detection in the absence of corresponding manual labeling presents a formidable challenge. This paper presents a novel crack segmentation transfer learning method and a novel crack segmentation model called Swin-CrackFormer. The proposed method facilitates efficient crack image style transfer through a meticulously designed data preprocessing technique, followed by the utilization of a GAN model for image style transfer. Moreover, the proposed Swin-CrackFormer combines the advantages of Transformer and convolution operations to achieve effective local and global feature extraction. To verify the effectiveness of the proposed method, this study validates the proposed method on three unlabeled crack datasets and evaluates the Swin-CrackFormer model on the METU dataset. Experimental results demonstrate that the crack transfer learning method significantly improves the crack segmentation performance on unlabeled crack datasets. Moreover, the Swin-CrackFormer model achieved the best detection result on the METU dataset, surpassing existing crack segmentation models.

Generation of Stage Tour Contents with Deep Learning Style Transfer (딥러닝 스타일 전이 기반의 무대 탐방 콘텐츠 생성 기법)

  • Kim, Dong-Min;Kim, Hyeon-Sik;Bong, Dae-Hyeon;Choi, Jong-Yun;Jeong, Jin-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1403-1410
    • /
    • 2020
  • Recently, as interest in non-face-to-face experiences and services increases, the demand for web video contents that can be easily consumed using mobile devices such as smartphones or tablets is rapidly increasing. To cope with these requirements, in this paper we propose a technique to efficiently produce video contents that can provide experience of visiting famous places (i.e., stage tour) in animation or movies. To this end, an image dataset was established by collecting images of stage areas using Google Maps and Google Street View APIs. Afterwards, a deep learning-based style transfer method to apply the unique style of animation videos to the collected street view images and generate the video contents from the style-transferred images was presented. Finally, we showed that the proposed method could produce more interesting stage-tour video contents through various experiments.

A Study on Image Creation and Modification Techniques Using Generative Adversarial Neural Networks (생성적 적대 신경망을 활용한 부분 위변조 이미지 생성에 관한 연구)

  • Song, Seong-Heon;Choi, Bong-Jun;Moon, M-Ikyeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.291-298
    • /
    • 2022
  • A generative adversarial network (GAN) is a network in which two internal neural networks (generative network and discriminant network) learn while competing with each other. The generator creates an image close to reality, and the delimiter is programmed to better discriminate the image of the constructor. This technology is being used in various ways to create, transform, and restore the entire image X into another image Y. This paper describes a method that can be forged into another object naturally, after extracting only a partial image from the original image. First, a new image is created through the previously trained DCGAN model, after extracting only a partial image from the original image. The original image goes through a process of naturally combining with, after re-styling it to match the texture and size of the original image using the overall style transfer technique. Through this study, the user can naturally add/transform the desired object image to a specific part of the original image, so it can be used as another field of application for creating fake images.

Printmaking Style Effect using Image Processing Techniques (영상처리 기법을 이용한 판화 스타일 효과)

  • Kim, Seung-Wan;Gwun, Ou-Bong
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.76-83
    • /
    • 2010
  • In this paper, we propose a method that converts a inputted real image to a image feeling like printmaking. That is, this method converts a inputted real image to man made rubber printmaking style image using image processing techniques such as spatial filters, image bit-block transfer, etc. The process is as follows. First, after detecting edges in source image, we get the first image by deleting noise lines and points, then by sharpening. Secondly, we get second image using the similar method to the first image. Finally, we blend the first and the second image by logical AND operation This processing enables us to represent rubber panel and knife effects. Also, the proposed method shows that double edge detecting is effective in enhancing line-width and removing the tiny lines.

Image Destylization (영상 디스타일화)

  • Le, Hyun-Jun;Lee, Seung-Yong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.13 no.3
    • /
    • pp.7-10
    • /
    • 2007
  • We propose an image filtering technique that removes various image styles. To destylize a given image, we define image styles as repeated patterns existing in the image. For dll pixels of the image, we compute image styles as style vectors. We remove image styles by using bilateral filtering based on these style vectors. Destylization results show well smoothed images while preserving feature boundaries. Our method effectively removes image styles and reveals image structures clearly, and results can be applied to several applications such as texture transfer.

  • PDF

Development of sumi-e effect from example image (예제 기반 수묵담채화 표현기술 개발)

  • Lee, Won-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3454-3459
    • /
    • 2013
  • Sumi-e is one of the art work that uses not only ink line but also color painting. This technique is well known as a representative Asian painting style and widely used in movie, advertisement poster and various effect in camera device. In this paper, we propose an algorithm that can generate result image with Sumi-e effects of example image based on computer graphics and image processing techniques. For this, we pass two steps. The first is painting expression step. We used texture transfer technique to generate result with texture effect of reference image by analyzing numerically. The second step is ink-painting effect generation step. We express ink-painting effect in outline by considering intensity variation in edge of example image. Our algorithm can express various Sumi-e style based on selected reference image. So it can be utilized to various contents generating research.

Research Trends of Generative Adversarial Networks and Image Generation and Translation (GAN 적대적 생성 신경망과 이미지 생성 및 변환 기술 동향)

  • Jo, Y.J.;Bae, K.M.;Park, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.91-102
    • /
    • 2020
  • Recently, generative adversarial networks (GANs) is a field of research that has rapidly emerged wherein many studies conducted shows overwhelming results. Initially, this was at the level of imitating the training dataset. However, the GAN is currently useful in many fields, such as transformation of data categories, restoration of erased parts of images, copying facial expressions of humans, and creation of artworks depicting a dead painter's style. Although many outstanding research achievements have been attracting attention recently, GANs have encountered many challenges. First, they require a large memory facility for research. Second, there are still technical limitations in processing high-resolution images over 4K. Third, many GAN learning methods have a problem of instability in the training stage. However, recent research results show images that are difficult to distinguish whether they are real or fake, even with the naked eye, and the resolution of 4K and above is being developed. With the increase in image quality and resolution, many applications in the field of design and image and video editing are now available, including those that draw a photorealistic image as a simple sketch or easily modify unnecessary parts of an image or a video. In this paper, we discuss how GANs started, including the base architecture and latest technologies of GANs used in high-resolution, high-quality image creation, image and video editing, style translation, content transfer, and technology.

Style Synthesis of Speech Videos Through Generative Adversarial Neural Networks (적대적 생성 신경망을 통한 얼굴 비디오 스타일 합성 연구)

  • Choi, Hee Jo;Park, Goo Man
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.11
    • /
    • pp.465-472
    • /
    • 2022
  • In this paper, the style synthesis network is trained to generate style-synthesized video through the style synthesis through training Stylegan and the video synthesis network for video synthesis. In order to improve the point that the gaze or expression does not transfer stably, 3D face restoration technology is applied to control important features such as the pose, gaze, and expression of the head using 3D face information. In addition, by training the discriminators for the dynamics, mouth shape, image, and gaze of the Head2head network, it is possible to create a stable style synthesis video that maintains more probabilities and consistency. Using the FaceForensic dataset and the MetFace dataset, it was confirmed that the performance was increased by converting one video into another video while maintaining the consistent movement of the target face, and generating natural data through video synthesis using 3D face information from the source video's face.