The histogram specification is to change the histogram shape of the image into the already defined shape. This technique can be applied usefully in various image processing fields which include a machine vision. However, the histogram specification technique has its basic limits. For example, the histogram does not have location information of pixel within the image and receives the digital image, which is stored through a quantization process, as an input. Namely, the accuracy of specification falls in the high-resolution image because the larger the resolution of image is becoming, the more the pixels having similar value are becoming. Therefore, we proposed the multiresolution histogram specification method for improving the accuracy of specification. Consequently, we can know that if the histogram specification is accomplished by using the proposed algorithm, destination image and source image were changed almost similarly.
Usually, spatial information can be incorporated into histograms by taking histograms of a multiresolution image. For these reasons, many researchers are interested in multiresolution histogram processing. If the relation and sensitivity of the multiresolution images are well combined without loss of information, we can obtain satisfactory results in several fields of image processing including histogram equalization, specification and pattern matching. In this paper, we propose a multiresolution histogram specification method that improves the accuracy of histogram specification. The multiresolution decomposition technique is used in order to overcome the unique feature of a histogram specification affected by a quantization error of a digitalized image. The histogram specification is processed after the reduction of image resolution in order to enhance the accuracy of the results by histogram specification methods. The experimental results show that the proposed method enhances the accuracy of specification compared to conventional methods.
In this paper we propose an image enhancement technique based on histogram specification method over local overlapping regions referred as Local Histogram Specification. First, both reference and original images are splitted into local regions that each overlaps half of its adjacent regions and general histogram specification method is used between corresponding local regions of reference and original image. However it produces noticeable boundary effects. Linear weighted image blending method is used to reduce this effect in order to make seamless image and we also proposed new technique dealing with over-enhanced contrast areas. We satisfied with our experimental results that showed better enhancement accuracy and less noise amplifications compared to other well-known image enhancement methods. We conclude that the proposed method is well suited for motion detection systems as a responsible part to overcome sudden illumination changes.
The histogram specification turns the shape of a histogram into that we want to specify. This technique can be applied usefully in various image processing fields such as machine vision. However, the histogram specification technique has its basic limits. For instance, the histogram does not have location information of pixels. Also, the accuracy of the specification drops because of quantization errors of the digitized image. In this paper, we proposed a multiresolution histogram specification method in order to improve the accuracy of specification in terms of resemblance between destination and source image. The experimental results show that the proposed method enhances the accuracy of the specification compared to the conventional methods.
In this paper, an automatic histogram specification method is proposed for image enhancement, Fuzzy membership value is adopted for the representation of image histogram. The desired PDF is automatically constructed by the fuzzy membership value. Fuzzy membership value is extracted from dark membership, bright membership function and original histogram. The effectual results are demonstrated by desired PDF which meet the image enhancement requirements. The performance and effectiveness are shown by the analysis and the resultant image in comparison with histogram equalization method.
The goal of this paper is improvement of vision inspection accuracy by using histogram specification operation. The histogram is composed of horizontal axis of image intensity value and vertical axis of pixel number in image. In appearance vision inspection, the histogram of reference image and input image are different because of minutely lighting distinction. The minutely lighting distinction is main reason of vision inspection error in many cases. Therefore we made an effort for elevation of vision inspection accuracy by making the identical histogram of reference image and input image. As a result of this area separation histogram specification algorithm, we could increase the exactness of vision inspection and prevent system error from physical and spirit condition of human. Also this system has been developed only using PC, CCD Camera and Visual C++ for universal workplace.
IEIE Transactions on Smart Processing and Computing
/
제1권1호
/
pp.8-16
/
2012
An image obtained from a low light environment results in a low-exposure problem caused by non-ideal camera settings, i.e. aperture size and shutter speed. Of particular note, the multiple color-filter aperture (MCA) system inherently suffers from low-exposure problems and performance degradation in its image classification and registration processes due to its finite size of the apertures. In this context, this paper presents a novel method for the color enhancement of low-exposure images and its application to color shift model-based MCA system for image refocusing. Although various histogram equalization (HE) approaches have been proposed, they tend to distort the color information of the processed image due to the range limits of the histogram. The proposed color enhancement algorithm enhances the global brightness by analyzing the basic cause of the low-exposure phenomenon, and then compensates for the contrast degradation artifacts by using an adaptive histogram specification. We also apply the proposed algorithm to the preprocessing step of the refocusing technique in the MCA system to enhance the color image. The experimental results confirm that the proposed method can enhance the contrast of any low-exposure color image acquired by a conventional camera, and is suitable for commercial low-cost, high-quality imaging devices, such as consumer-grade camcorders, real-time 3D reconstruction systems, digital, and computational cameras.
IEIE Transactions on Smart Processing and Computing
/
제3권2호
/
pp.52-58
/
2014
Exact histogram specification (EHS) transforms the histogram of an input image into the specified histogram. In the conventional EHS techniques, the pixels are first sorted according to their graylevels, and the pixels that have the same graylevel are further differentiated according to the local average of the pixel values and the edge strength. The strictly ordered pixels are then mapped to the desired histogram. However, since the conventional sorting method is inherently dependent on the initial graylevel-based sorting, the contrast enhancement capability of the conventional EHS algorithms is restricted. We propose a modified EHS algorithm considering the just noticeable difference. In the proposed algorithm, the edge pixels are pre-processed such that the output edge pixels obtained by the modified EHS can result in the local contrast enhancement. Moreover, we introduce a new sorting method for the pixels that have the same graylevel. Experimental results show that the proposed algorithm provides better image enhancement performance compared to the conventional EHS algorithms.
본 논문에서는 두 가지 영상 콘트라스트 향상 기법인 RSWHE (Recursively Separated and Weighted Histogram Equalization)와 RSWHS (Recursively Separated and Weighted Histogram Specification)를 새롭게 제안한다. RSWHE는 히스토그램 평활화 방법에 히스토그램 분할과 가중치 개념을 적용하였고, RSWHS는 히스토그램 명세화 방법에 히스토그램 분할과 가중치 개념을 적용하였다. 제안 방법은 1) 입력 영상의 평균 명도 값을 기준으로 히스토그램을 분할하고, 2) 분할된 각 서브히스토그램(sub-histogram)이 차지하는 확률밀도 값을 계산하며, 3) 계산된 확률밀도 값을 가중치로 사용하여 각 서브히스토그램을 변형한 후, 4) 변형된 각 서브히스토그램을 독립적으로 평활화 하거나 (RSWHE 방법인 경우) 또는 명세화 하게 (RSWHS 방법인 경우) 된다. 다양한 영상에 대한 실험을 통하여, 제안하는 두 방법이 기존의 다른 방법들에 비하여 콘트라스트 향상과 평균 명도 보존 측면에서 우수한 성능을 나타냄을 알 수 있었다.
대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
/
pp.188-193
/
1999
Technology of GIS evolved as a means of assembling and analyzing diverse spatial data. Many systems have been developed, and almost of systems are proprietary. There is a lots of lack of interoperability and reusability between them. This paper describes the development of Open GIS component software. The developing system have an end in view of GIS tool software which is interoperable and reusable. To increase the interoperability and reusability, the system is based on the OGC(Open GIS Consortium)'s Open GIS Simple Features Specification for OLE/COM. The OGC's specification is announced to increasing the full interoperability of various geospatial data and geoprocessing resources. With the Open specification, component based software ensures the reusability. We implement three kinds of component: Geometry component, Spatial Reference System Component, and MapBase Component. The first two components are compatible to the OGC's specification and the third one is designed to GIS tool software for variant GIS applications. The Open GIS component software system is developed on object-oriented computing environment, ATL/COM and Visual C++. As we made application programs using Visual Basic, the advantages of component based Open GIS software was proved.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.