• 제목/요약/키워드: Image Similarity

검색결과 1,063건 처리시간 0.033초

머신러닝을 이용한 탄성파 반사법 자료의 해저면 겹반사 제거 (Removal of Seabed Multiples in Seismic Reflection Data using Machine Learning)

  • 남호수;임보성;권일룡;김지수
    • 지구물리와물리탐사
    • /
    • 제23권3호
    • /
    • pp.168-177
    • /
    • 2020
  • 해저면 탄성파 겹반사는 발파점 모음자료와 겹쌓기 단면에서 모두 일차 반사파의 해석에 잘못된 결과를 초래할 수 있다. 따라서, 해저면 겹반사는 자료처리를 통해 제거해야 한다. 전통적인 자료처리 과정에서 겹반사 제거는 예측오차 곱풀기와 라돈 필터링 등과 같은 모델-기반 기법과 지표관련-겹반사제거와 같은 데이터-기반 기법에 의해 이루어져 왔다. 그러나 대다수의 자료처리 과정들은 방대한 컴퓨터 자원과 전문적인 자료처리 기법뿐만 아니라 자료처리 변수들을 테스트하고 선택하는데 많은 시간을 필요로 한다. 이 논문에서는 머신러닝 시스템을 활용한 해저면 겹반사의 제거효과를 살펴보기 위해 Marmousi2 속도모델에 대한 수치모델링으로 겹반사가 포함된 입력데이터와 겹반사가 포함되지 않은 레이블데이터를 생성하였다. 수직시간차가 보정된 공통중간점 모음자료로 훈련데이터를 구성하였으며 인공신경망은 U-Net 모델을 적용하였다. 해저면 겹반사를 제거하기 위해 훈련된 모델은 레이블데이터에 거의 근접하는 예측 결과를 만들어내며, 현장자료에 대한 예측 테스트에서 해저면 겹반사를 효과적으로 제거하는 것으로 나타났다.

통계적 분석 기반 불법 복제 비디오 영상 감식 방법 (A Novel Video Copy Detection Method based on Statistical Analysis)

  • 조혜정;김지은;손채봉;정광수;오승준
    • 방송공학회논문지
    • /
    • 제14권6호
    • /
    • pp.661-675
    • /
    • 2009
  • 인터넷과 멀티미디어 기술이 발달함에 따라 무분별한 불법 콘텐츠들의 유통으로 인한 저작권 침해가 심각한 사회적 문제로 대두되고 있어, 불법 복제 영상을 검출하는 시스템의 개발이 시급하다. 본 논문에서는 공간영역 상에서 다양하게 변형된 복제 영상과 원본 영상간의 통계적 특성을 이용하여 그 유사도를 측정하고 복제 여부를 판단하는 계층적 구조의 불법 비디오 감식 방법을 제안한다. 영상의 대표적 특성인 휘도 성분에 따라 순위를 매김으로써 공간적 변형에 영향을 받지 않도록 하였으며, 데이터베이스에 저장된 방대한 양의 영상들에 대한 검색시간과 계산량을 줄이기 위해 순위 표본 프레임을 이용하여 유사한 후보 영상군을 추출한다. 이러한 후보 영상군을 대상으로 일반적인 불법 복제 비디오의 형태를 감안하여 각 프레임의 가장자리에 위치한 검은색 영역을 제외함과 동시에 영상의 중앙 영역을 포함하여 통계 검정을 이용함으로써 복제 여부를 판단한다. 실험 결과, 제안하는 방법은 이전 방법에 비해 순위 표본 프레임의 정확도가 유사하면서 선택된 순위 표본 프레임 수가 약 61% 가량 적게 추출하여 특징 정보에 저장되는 메모리 양을 절약할 수 있었다. 또한 영상의 화질 열화, 대비 변형, 확대 및 축소, 화면비 변환, 자막 삽입 등 다양한 공간적 변형에도 포괄적으로 복제 여부를 판단할 수 있음을 실험을 통해 확인하였다.

장르 판별 알고리즘을 이용한 책 장르 시각화 (Book Genre Visualization based on Genre Identification Algorithm)

  • 김효영;박진완
    • 한국콘텐츠학회논문지
    • /
    • 제12권5호
    • /
    • pp.52-61
    • /
    • 2012
  • 텍스트 시각화는 데이터 시각화의 한 분야로, 방대한 텍스트 데이터에 대한 다양한 분석 기법을 바탕으로 텍스트의 내용적 측면은 물론 구조적, 형식적 측면을 시각적으로 재현(represent)해내는 방법에 관한 연구이다. 본 연구에서는 이러한 텍스트 시각화 연구의 일환으로, 서적이 갖는 장르적 특성을 서적 본문에 직접 사용된 단어들을 바탕으로 파악해낼 수 있는 방법에 대해 고찰하고, 실험을 통한 검증을 바탕으로 서적 장르 시각화의 요소를 도출한 후, 이를 직관적이고 효율적으로 시각화하는 방법에 대해 서술하였다. 본 연구에서 제안하는 시각화는 첫째, 책에 직접 사용된 단어를 토대로 책의 실질적 장르를 파악할 수 있으며, 둘째, 시각화 결과 이미지를 통해 해당 서적이 어떤 장르와 가장 가까운지 한 눈에 파악할 수 있을 뿐 아니라, 한 책이 갖는 복합 장르적 특성을 알 수 있도록 해주고, 이미지 내의 점(dot)의 개수와 곡선의 곡률, 밝기 등을 통해 대표 장르로 파악된 장르의 근접도(유사도)를 짐작할 수 있다는 점에서 그 의의를 갖는다. 나아가 개별 소비자 자신이 선호하는 서적들에 대한 적용을 통해 개인별 선호 서적(또는 장르) 이미지를 제공하는 등 서적 추천 시스템과 같은 북 커스터마이징(book customizing)과 같은 분야에도 다양하게 활용될 수 있다.

3차원 객체 복원을 위한 정규 상관도 기반 다중 시점 배경 차분 기법 (Normalized Cross Correlation-based Multiview background Subtraction for 3D Object Reconstruction)

  • 팽경현;황성수;김희동;김수정;유지성;김성대
    • 전자공학회논문지
    • /
    • 제50권6호
    • /
    • pp.228-237
    • /
    • 2013
  • 본 논문에서는 배경과 객체의 색상이 유사한 상황에서 강인한 정규 상관도(Normalized Cross Correlation) 기반 다중 시점 배경 차분 기법을 제안한다. 인위적으로 배경을 구성한 경우가 아닐 경우, 다중 시점 영상의 배경 영상에서 객체로 인해 가려지게 되는 영역들은 서로 다른 색상을 가지고 있을 확률이 높다. 그러나 객체의 등장으로 인해 이러한 영역들은 서로 유사한 색상을 가지게 된다. 이에 기반하여 본 논문은 GoNCC(Graph of Normalized Cross Correlation)을 제안한다. GoNCC는 임의 시점 영상의 한 화소와 에피폴라 제약조건 관계에 있는 인접 영상 내 화소와 해당 화소와의 정규 상관도 값의 분포를 의미한다. 제안하는 다중 시점 배경 차분 기법은 현재 영상의 GoNCC와 배경 영상의 GoNCC를 비교함으로써 이루어진다. 계산량을 줄이기 위해 다중 시점 배경 차분 기법을 모든 화소에 적용하지 않고 간단한 단일 시점 배경 차분 기법으로 판단하기 어려운 영역에 대해서만 제안 방법을 수행한다. 실험 결과 단순한 단일 시점 배경 차분 기법에 비하여 매우 우수한 성능을 보였고, 기존의 다중 시점 배경 차분 기법에 비해서도 보다 정확하게 객체 영역을 검출하는 것을 확인하였다.

Mean Shift 알고리즘 기반의 히스토그램 근사화를 이용한 피부 영역 검출 (Skin Region Detection Using Histogram Approximation Based Mean Shift Algorithm)

  • 변기원;주재흠;남기곤
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.21-29
    • /
    • 2011
  • 사전에 정의된 피부 색상 정보를 이용한 기존 피부 검출 방법들은 배경과 피부 영역을 분할하는 단계에서 사용되는 임계값을 실험을 통하여 주관적 관점에서 결정하였다. 또한 기존 방법들은 배경 환경과 조명 환경에 따라 각각 다른 임계값을 설정하였다. 이러한 기존 방법들은 반복 실험을 통하여 추정된 임계값에 따라 성능이 좌우되는 단점이 제시되었다. 제시된 기존 방법들의 단점을 극복하기 위하여 본 논문은 mean shift 알고리즘 기반의 히스토그램 근사화를 이용한 피부 영역 검출 방법을 제안한다. 제안하는 방법은 CbCr 컬러공간에서의 표준 피부색상과 유사도를 비교하여 생성된 입력 영상의 피부맵(skin-map)의 히스토그램에서 mean shift 방법을 이용하여 각각 밝기 영역별로 수렴하는 극대점을 능동적으로 찾아서 배경 영역과 피부영역으로 분할한다. 히스토그램은 픽셀의 명도값에 따라 누적되는 불연속 함수의 형태를 가지므로 베이지 곡선(Bezier curve) 기법을 이용하여 연속 가우시안 함수로 근사화된다. 따라서 제안하는 방법은 기존 방법에서처럼 수동적으로 임계값을 설정하는 방법을 사용하지 않고 mean shift 기법을 이용하여 능동적으로 영역 분할점인 극대점을 찾아서 피부 영역을 검출한다. 제안된 방법은 실험을 통하여 강인하고 효율적으로 피부 영역을 검출하였다.

실시간 얼굴 방향성 추정을 위한 효율적인 얼굴 특성 검출과 추적의 결합방법 (A Hybrid Approach of Efficient Facial Feature Detection and Tracking for Real-time Face Direction Estimation)

  • 김웅기;전준철
    • 인터넷정보학회논문지
    • /
    • 제14권6호
    • /
    • pp.117-124
    • /
    • 2013
  • 본 논문에서는 실시간으로 입력되는 비디오 영상으로부터 사용자의 얼굴 방향을 효율적으로 추정하는 새로운 방법을 제안하였다. 이를 위하여 입력 영상으로부터 외부조명의 변화에 덜 민감한 Haar-like 특성을 이용하여 얼굴영역의 검출을 수행하고 검출 된 얼굴영역 내에서 양쪽 눈, 코, 입 등의 주요 특성을 검출한다. 이 후 실시간으로 매 프레임마다 광류를 이용해 검출된 특징 점을 추적하게 되며, 추적된 특징 점을 이용해 얼굴의 방향성 추정한다. 일반적으로 광류를 이용한 특징 추적에서 발생할 수 있는 특징점의 좌표가 유실되어 잘못된 특징점을 추적하게 되는 상황을 방지하기 위하여 검출된 특징점의 템플릿 매칭(template matching)을 사용해 추적중인 특징점의 유효성을 실시간 판단하고, 그 결과에 따라 얼굴 특징 점들을 다시 검출하거나, 추적을 지속하여 얼굴의 방향성을 추정을 가능하게 한다. 탬플릿 매칭은 특징검출 단계에서 추출된 좌우 눈, 코끝 그리고 입의 위치 등 4가지 정보를 저장한 후 얼굴포즈 측정에 있어 광류에의해 추적중인 해당 특징점들 간의 유사도를 비교하여 유사도가 임계치를 벗어 날 경우 새로이 특징점을 찾아내는 작업을 수행하여 정보를 갱신한다. 제안된 방법을 통해 얼굴의 특성 추출을 위한 특성 검출과정과 검출된 특징을 지속적으로 보완하는 추적과정을 자동적으로 상호 결합하여 안정적으로 실시간에 얼굴 방향성 추정 할 수 있었다. 실험을 통하여 제안된 방법이 효과적으로 얼굴의 포즈를 측정할 수 있음을 입증하였다.

무릎 MR 영상에서 다중 아틀라스 기반 지역적 가중 투표 및 패치 기반 윤곽선 특징 분류를 통한 반월상 연골 자동 분할 (Automatic Meniscus Segmentation from Knee MR Images using Multi-atlas-based Locally-weighted Voting and Patch-based Edge Feature Classification)

  • 김순빈;김현진;홍헬렌;왕준호
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제24권4호
    • /
    • pp.29-38
    • /
    • 2018
  • 본 논문에서는 무릎 MR 영상에서 반월상 연골의 자동 위치화, 다중 아틀라스 기반 지역적 가중 투표를 통한 반월상 연골 분할 및 패치 기반 윤곽선 특징 분류를 통한 반월상 연골 자동 분할 방법을 제안한다. 첫째, 뼈와 무릎 관절 연골을 분할한 후 이를 이용하여 반월상 연골의 관심볼륨영역을 자동 위치화한다. 둘째, 반월상 연골의 관심볼륨영역에서 형상 및 밝기값 분포 가중치를 고려한 다중 아틀라스 기반 지역적 가중 투표를 통해 반월상 연골을 분할한다. 셋째, 밝기값이 유사한 측부 인대로의 누출을 제거하기 위해 형상 및 거리 가중치를 고려한 패치 기반 윤곽선 특징 분류를 통해 반월상 연골 분함을 개선한다. 제안 방법을 통한 분할 결과와 수동 분할 결과 간 다이스 유사계수는 내측 반월상 연골은 80.13%, 외측 반월상 연골은 80.81%를 보였으며 다중 아틀라스 기반 지역적 가중투표를 통한 분할 방법과 비교하여 내 측 및 외측 반월상 연 골 각각 7.25%, 1.31% 향상되었다.

실시간 범죄 모니터링을 위한 CCTV 협업 추적시스템 개발 연구 (Development of CCTV Cooperation Tracking System for Real-Time Crime Monitoring)

  • 최우철;나준엽
    • 한국산학기술학회논문지
    • /
    • 제20권12호
    • /
    • pp.546-554
    • /
    • 2019
  • 본 논문에서는 CCTV를 통해 실시간 범죄에 대응할 수 있도록 CCTV 카메라 간 협업이 가능한 기술과 이를 활용한 실시간 범죄대응 서비스에 대해 연구하였다. 본 연구에서 개발하고자 하는 CCTV 협업 기술은 한 곳의 CCTV에서 추출된 이동 객체(용의자)가 범위를 벗어나 다른 CCTV로 이동했을 때 객체의 유사도 정보를 관제자에게 전달하여 선택된 객체를 추적하는 프로그램 모델이다. 일련의 유사도 정보 획득 과정은 객체 감지(object detection), 사전 분류(pre-classification), 특징 추출(feature extraction), 분류(classification)의 4단계의 프로세스로 진행된다. 이는 주로 사후처리용으로 사용되던 CCTV 모니터링을 긴박한 실시간 범죄에 대응하도록 개선시켜 범죄발생 초기대응 체계를 강화 할 수 있다. 또한 관제요원의 모니터링에만 의존하는 CCTV 관제시스템을 부분 자동화하여 지자체 관제센터 운영효율성을 증대시킬 수 있다. 해당 기술 및 서비스는 안양시 테스트베드에 구축하여 시범운영할 예정으로, 서비스가 안정화가 되면 전국 지자체에 확산하여 상용화가 될 것으로 예상된다. 향후 CCTV 협업 뿐 아니라 실시간 개인 정밀위치결정, 스마트폰 연계 등 통합 방범서비스 연구가 진행되어 시민들이 보다 안전한 생활을 영위할 수 있기를 기대한다.

화장품 광고 모델의 속성이 여성 소비자의 구매욕구에 미치는 영향 (Effect of women consumers purchase by an attribute of cosmetic Advertising Model)

  • 강인숙
    • 디자인학연구
    • /
    • 제14권3호
    • /
    • pp.37-48
    • /
    • 2001
  • 이 논문은 우리나라의 광고에 큰 비중을 차지하고 있는 화장품 광고에서 광고모델 속성이 여성 소비자의 화장품 구매에 미치는 영향에 대한 실증적인 연구이다. 그 결과 소비자들은 광고 모델 속성에 대해서 신체적 매력 보다 전문성과 진실성이 있어야 한다고 응답하였다. 광고 모델이 좋아서 화장품을 구입한 경우, 호감과 신체적 매력은 매우 긍정적인 반응으로 나타났고, 전문성과 진실성은 부정적인 반응으로 나타났다. 여성 소비자들은 현재 광고되고 있는 화장품 광고 모델들에 대해서 관심은 있으나 모델들의 신뢰도가 부족하여 구매에 영향을 미치지 못하고 있다. 우리나라의 화장품 광고 모텔은 대부분 유명 연예인이기 때문에 신체적 매력, 호감, 친밀감은 높은 긍정적 반응을 보이고 있으나, 전문성, 진실성, 유사성은 매우 부정적인 반응을 나타내고 있다. 그러므로 화장품 광고 모델 유형에 따른 모델 속성을 실증적으로 연구한다는 것이 다소 무리였다고 생각된다. 화장품은 감성적으로 선택되며 자기 관여도가 높은 제품이므로 광고하는 제품에 대한 지식·경험·능력을 가진 전문성이 연상되는 모델의 선정이 바람직하다고 본다. 그리고, 제품에 대한 어떤 편견도 없이 순수하게, 객관적으로 의견을 제시할 수 있는 진실성과 제품·소비자와 이미지가 일치하는 광고모델이 적합하다고 본다.

  • PDF

텍스타일 기반의 협력적 필터링 기술과 디자인 요소에 따른 감성 분석을 이용한 패션 디자인 추천 에이전트 시스템 (A Fashion Design Recommender Agent System using Collaborative Filtering and Sensibilities related to Textile Design Factors)

  • 정경용;나영주;이정현
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제10권2호
    • /
    • pp.174-188
    • /
    • 2004
  • 제품의 품질 및 가격뿐만 아니라 물질적 풍요로움과 더불어 다변화 되어가는 생활 환경 속에서 소비자의 감성과 선호도를 파악하는 것은 제품 판매 전략의 중요한 성공요소가 되고 있다. 이를 위하여 제품의 기능적 측면뿐만 아니라 개개인의 정서적 감정과 선호도가 반영된 제품의 설계나 디자인 또한 요구되고 있다. 본 연구에서는 사용자의 감성과 선호도를 중심으로 소재를 개발하는 방법의 하나로 협력적 필터링 개인화 기법을 응용하여 패션 디자인 추천 에이전트 시스템(FDRAS-pro)을 제안한다. 텍스타일 기반의 협력적 필터링 기술에서, 예측에 사용될 이웃의 수를 결정하기 위해서 Representative Attribute-Neighborhood 방법을 사용한다. 사용자들간의 유사도 가중치를 계산하기 위해서 피어슨 상관계수(Pearson Correlation Coefficient)를 사용한다. 소재에 대한 사용자의 감성이나 선호도에 대한 텍스타일의 대표 감성 어휘를 추출함으로써 소재 개발을 위한 감성 어휘 데이타베이스를 구축한다. FDRAS-pro는 구축된 감성 어휘 데이타베이스를 기반으로 성향이 비슷한 사용자에게 텍스타일 디자인을 추천한다. 디자인 요소에 따른 감성 분석을 하기 위해서, 텍스타일 디자인을 9가지 디자인 요소(디자인 소재, 모티브대 배경비율, 모티브의 변화도, 해석법, 모티브의 배열, 모티브의 명료성, 명도차, 색상차, 채도차)에 따라 분석하였다. 패션 디자인 추천 시스템으로 개발하여 시스템의 논리적 타당성과 유효성을 검증하기 위해 실험적인 적용을 시도하고자 한다.