• Title/Summary/Keyword: Image Similarity

Search Result 1,063, Processing Time 0.025 seconds

Effects of Flow Rates and CS Factors on TOF MRA using Compressed Sensing (Compressed sensing을 이용한 TOF MRA 검사에서 Flow rate와 CS factor의 변화에 따른 영향)

  • Kim, Seong-Ho;Jeong, Hyun-Keun;Yoo, Se-Jong
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.3
    • /
    • pp.281-291
    • /
    • 2021
  • This study aimed to measure the quantitative changes in images according to the use of compressed sensing in expressing the slow flow rate in TOF MRA test using magnetic resonance imaging. This study set different blood flow rate sections by using auto-injector and flow phantom and compared changes in the SNR, CNR, SSIM, and RMSE measurements by different CS factors between TOF with CS and TOF without CS. One-way ANOVA was performed to test the effect on the image induced by the increase of the CS factor. The results revealed that TOF MRA with CS significantly decreased scan time without significantly affecting SNR and CNR compared to TOF MRA with CS. On the other hand, the differences in SSIM and RMSE between TOF with CS and TOF without CS increased as the CS factor increased. Therefore, it is necessary to efficiently reduce scan time by adapting the CS technique while considering the appropriate range of the CS factor. Additionally, more studies are needed to evaluate CS factors and the similarity precision of images further.

A New Face Morphing Method using Texture Feature-based Control Point Selection Algorithm and Parallel Deep Convolutional Neural Network (텍스처 특징 기반 제어점 선택 알고리즘과 병렬 심층 컨볼루션 신경망을 이용한 새로운 얼굴 모핑 방법)

  • Park, Jin Hyeok;Khan, Rafiul Hasan;Lim, Seon-Ja;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.176-188
    • /
    • 2022
  • In this paper, we propose a compact method for anthropomorphism that uses Deep Convolutional Neural Networks (DCNN) to detect the similarities between a human face and an animal face. We also apply texture feature-based morphing between them. We propose a basic texture feature-based morphing system for morphing between human faces only. The entire anthropomorphism process starts with the creation of an animal face classifier using a parallel DCNN that determines the most similar animal face to a given human face. The significance of our network is that it contains four sets of convolutional functions that run in parallel, allowing it to extract more features than a linear DCNN network. Our employed texture feature algorithm-based automatic morphing system recognizes the facial features of the human face and takes the Control Points automatically, rather than the traditional human aiding manual morphing system, once the similarity was established. The simulation results show that our suggested DCNN surpasses its competitors with a 92.0% accuracy rate. It also ensures that the most similar animal classes are found, and the texture-based morphing technology automatically completes the morphing process, ensuring a smooth transition from one image to another.

A Client-Side App Model for Classifying and Storing Documents

  • Elhussein, Bahaeldein;Karrar, Abdelrahman Elsharif;Khalifa, Mahmoud;Alsharani, Mohammed Mujib
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.225-233
    • /
    • 2022
  • Due to the large number of documents that are important to people and many of their requests from time to time to perform an essential official procedure, this requires a practical arrangement and organization for them. When necessary, many people struggle with effectively arranging official documents that enable display, which takes a lot of time and effort. Also, no mobile apps specialize in professionally preserving essential electronic records and displaying them when needed. Dataset consisting of 10,841 rows and 13 columns was analyzed using Anaconda, Python, and Mito Data Science new tool obtained from Google Play. The research was conducted using the quantitative descriptive approach. The presented solution is a model specialized in saving essential documents, categorizing according to the user's desire, and displaying them when needed. It is possible to send in an image or a pdf file. Aside from identifying file kinds like PDFs and pictures, the model also looks for and verifies specific file extensions. The file extension and its properties are checked before sharing or saving it by applying the similarity algorithm (Levenshtein). Our method effectively and efficiently facilitated the search process, saving the user time and effort. In conclusion, such an application is not available, which facilitates the process of classifying documents effectively and displaying them quickly and easily for people for printing or sending to some official procedures, and it is considered one of the applications that greatly help in preserving time, effort, and money for people.

The Effect of Beauty Influencers' Characteristics and Product Characteristics on New Product Acceptance Intentions - Focusing on Chinese Consumers - (뷰티 인플루언서 특성과 제품 특성이 신제품 수용의도에 미치는 영향 - 중국 소비자를 대상으로 -)

  • Ruiqi Xu;Eun-Hye Kim;Jin-Hwa Lee
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.719-730
    • /
    • 2022
  • This study explored the impact of beauty influencers' characteristics and product characteristics on new product acceptance intentions and studied the mediating effects of consumer trust in this process. A survey was conducted from February 22, 2021, to February 28, 2021, with Gen Y and Gen Z women in China, and 379 questionnaires were analyzed. The conclusions are as follows: First, the characteristics of beauty influencers are authenticity and expertise, similarity, attractiveness, interactivity, familiarity, and trustworthiness; product characteristics are cost, image, product quality, product perception, sales promotion, and sustainability. Second, partial beauty influencers' characteristics and partial product characteristics have a positive impact on consumer confidence and acceptance intention of the new product. Third, the mediating effect of consumer trust in the process by which beauty influencers' characteristics and product characteristics influence the intention of new product acceptance was determined. Therefore, when beauty companies use influencers in marketing, it is necessary to understand their characteristics, consider their professionality and authenticity, examine their reliability, and assess their ability to form connections with images and viewers that match their products. Additionally, to increase the acceptance intention of new products, companies should present the price of high-quality products, product sensibilities, and corporate images of products and establish measures that can positively affect consumers' acceptance intention of new products by combining them with the characteristics of beauty influencers.

Shoe Recommendation System by Measurement of Foot Shape Imag

  • Chang Bae Moon;Byeong Man Kim;Young-Jin Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.93-104
    • /
    • 2023
  • In modern society, the service method is tended to prefer the non-face-to-face method rather than the face-to-face method. However, services that recommend products such as shoes will inevitably be face-to-face method. In this paper, for the purpose of non-face-to-face service, a system that a foot size is automatically measured and some shoes are recommended based on the measurement result is proposed. To analyze the performance of the proposed method, size measurement error rate and recommendation performance were analyzed. In the recommendation performance experiments, a total of 10 methods for similarity calculation were used and the recommendation method with the best performance among them was applied to the system. From the experiments, the error rate the foot size was small and the recommendation performance was possible to derive significant results. The proposed method is at the laboratory level and needs to be expanded and applied to the real environment. Also, the recommendation method considering design could be needed in the future work.

A Study on Textual transformation for the filming of Webtoon - Analysing visual composition of Secretly Greatly(2013) - (웹툰의 영화화에 대한 텍스트 변용에 관한 연구 - <은밀하게 위대하게>의 시각적 구성요소 분석을 중심으로 -)

  • Kim, Eun Ju;Kim, Geon
    • Design Convergence Study
    • /
    • v.14 no.1
    • /
    • pp.83-98
    • /
    • 2015
  • This study will examine the visual composition by which Secretly Greatly, in a circumstance that even the good original Manhwas or Webtoon have not made a hit on the market until now, could attract the spectator, in other word, illustrate the analogousness of the images through analysing visual texts. The study draw, first of all, a meaning of the box office performance caused by analogousness of image, that is similarity between the webtoon and film. In addition, the study will come up with an answer to the question that the webtoon, not in a temporary trend but in a sustainable form, can make itself develop. For this, the study suggests a meaning, worth and importance of the transformation, analysing visual components of a webtoon to film adaptation, Secretly Greatly. It primarily ranges over visual components, mise-en-scène identified with its expression formula, frame to frame changes and colour and tone. The examination sets the cinema's visual expression manner against the webtoon's on their concrete components: the size of scene, movement, color and tone, narrative condition and its background, spatial composition and depth, contrast, expression manner and disposition manner.

Multi-task Deep Neural Network Model for T1CE Image Synthesis and Tumor Region Segmentation in Glioblastoma Patients (교모세포종 환자의 T1CE 영상 생성 및 암 영역분할을 위한 멀티 태스크 심층신경망 모델)

  • Kim, Eunjin;Park, Hyunjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.474-476
    • /
    • 2021
  • Glioblastoma is the most common brain malignancies arising from glial cells. Early diagnosis and treatment plan establishment are important, and cancer is diagnosed mainly through T1CE imaging through injection of a contrast agent. However, the risk of injection of gadolinium-based contrast agents is increasing recently. Region segmentation that marks cancer regions in medical images plays a key role in CAD systems, and deep neural network models for synthesizing new images are also being studied. In this study, we propose a model that simultaneously learns the generation of T1CE images and segmentation of cancer regions. The performance of the proposed model is evaluated using similarity measurements including mean square error and peak signal-to-noise ratio, and shows average result values of 21 and 39 dB.

  • PDF

Enhanced Lung Cancer Segmentation with Deep Supervision and Hybrid Lesion Focal Loss in Chest CT Images (흉부 CT 영상에서 심층 감독 및 하이브리드 병변 초점 손실 함수를 활용한 폐암 분할 개선)

  • Min Jin Lee;Yoon-Seon Oh;Helen Hong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.1
    • /
    • pp.11-17
    • /
    • 2024
  • Lung cancer segmentation in chest CT images is challenging due to the varying sizes of tumors and the presence of surrounding structures with similar intensity values. To address these issues, we propose a lung cancer segmentation network that incorporates deep supervision and utilizes UNet3+ as the backbone. Additionally, we propose a hybrid lesion focal loss function comprising three components: pixel-based, region-based, and shape-based, which allows us to focus on the smaller tumor regions relative to the background and consider shape information for handling ambiguous boundaries. We validate our proposed method through comparative experiments with UNet and UNet3+ and demonstrate that our proposed method achieves superior performance in terms of Dice Similarity Coefficient (DSC) for tumors of all sizes.

Research of PPI prediction model based on POST-TAVR ECG (POST-TAVR ECG 기반의 PPI 예측 모델 연구)

  • InSeo Song;SeMo Yang;KangYoon Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.29-38
    • /
    • 2024
  • After Transcatheter Aortic Valve Replacement (TAVR), comprehensive management of complications, including the need for Permanent Pacemaker Implantation (PPI), is crucial, increasing the demand for accurate prediction models. Departing from traditional image-based methods, this study developed an optimal PPI prediction model based on ECG data using the XGBoost algorithm. Focusing on ECG signals like DeltaPR and DeltaQRS as key indicators, the model effectively identifies the correlation between conduction disorders and PPI needs, achieving superior performance with an AUC of 0.91. Validated using data from two hospitals, it demonstrated a high similarity rate of 95.28% in predicting PPI from ECG characteristics. This confirms the model's effective applicability across diverse hospital data, establishing a significant advancement in the development of reliable and practical PPI prediction models with reduced dependence on human intervention and costly medical imaging.

Kidney Tumor Segmentation Using a Hybrid CNN-Transformer Network for Partial Nephrectomy Planning (부분 신장 절제술 계획을 위한 하이브리드 CNN-트랜스포머 네트워크를 활용한 신장 종양 분할)

  • Goun Kim;Jinseo An;Yubeen Lee;Helen Hong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.4
    • /
    • pp.11-18
    • /
    • 2024
  • In partial nephrectomy for kidney cancer treatment, accurate segmentation of the kidney tumor is crucial for surgical planning, as it provides essential information on the precise size and location of the tumor. However, it is challenging due to the tumor's similar intensity to surrounding organs and the variability in its location and size across patients. In this study, we propose a hybrid network that integrates a convolutional neural network and a transformer to capture both local and global features, aiming to improve the segmentation performance of kidney tumors. We validated our method through comparative experiments with UNETR++, outperforming it with a Dice Similarity Coefficient (DSC) of 78.54% and a precision of 85.0 7%. Moreover, in the analysis by tumor size, our method demonstrated improvements by reducing over-segmentation and outlier cases observed in UNETR++.