• Title/Summary/Keyword: Image Resolution Enhancement

Search Result 205, Processing Time 0.025 seconds

Multiple Shortfall Estimation Method for Image Resolution Enhancement (영상 해상도 개선을 위한 다중 부족분 추정 방법)

  • Kim, Won-Hee;Kim, Jong-Nam;Jeong, Shin-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.105-111
    • /
    • 2014
  • Image resolution enhancement is a technique to generate high-resolution image through improving resolution of low-resolution obtained image. It is important to estimate correctly missing pixel value in low-resolution obtained image for image resolution enhancement. In this paper, multiple shortfall estimation method for image resolution enhancement is proposed. The proposed method estimate separate multiple shortfall by predictive degradation-restoration processing in sub-images of obtained image, and generate result image combining the estimated shortfall and interpolated obtained-image. Lastly, final reconstruction image is generated by deblurring of the result image. The experimental results demonstrate that the proposed method has the best results of all compared methods in objective image quality index: PSNR, SSIM, and FSIM. The quality of reconstructed image is superior to all compared methods, and the proposed method has better lower computational complexity than compared methods. The proposed method can be useful for image resolution enhancement.

A Versatile Medical Image Enhancement Algorithm Based on Wavelet Transform

  • Sharma, Renu;Jain, Madhu
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1170-1178
    • /
    • 2021
  • This paper proposed a versatile algorithm based on a dual-tree complex wavelet transform for intensifying the visual aspect of medical images. First, the decomposition of the input image into a high sub-band and low-sub-band image is done. Further, to improve the resolution of the resulting image, the high sub-band image is interpolated using Lanczos interpolation. Also, contrast enhancement is performed by singular value decomposition (SVD). Finally, the image reconstruction is achieved by using an inverse wavelet transform. Then, the Gaussian filter will improve the visual quality of the image. We have collected images from the hospital and the internet for quantitative and qualitative analysis. These images act as a reference image for comparing the effectiveness of the proposed algorithm with the existing state-of-the-art. We have divided the proposed algorithm into several stages: preprocessing, contrast enhancement, resolution enhancement, and visual quality enhancement. Both analyses show the proposed algorithm's effectiveness compared to existing methods.

SUPER RESOLUTION RECONSTRUCTION FROM IMAGE SEQUENCE

  • Park Jae-Min;Kim Byung-Guk
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.197-200
    • /
    • 2005
  • Super resolution image reconstruction method refers to image processing algorithms that produce a high resolution(HR) image from observed several low resolution(LR) images of the same scene. This method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, such as satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. In this paper we applied super resolution reconstruction method in spatial domain to video sequences. Test images are adjacently sampled images from continuous video sequences and overlapped for high rate. We constructed the observation model between the HR images and LR images applied by the Maximum A Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from low resolution images and compared the results with those from other known interpolation methods.

  • PDF

Enhancement of Displacement Resolution of Vibration Data Measured by using Camera Images (카메라 영상을 이용한 진동변위 측정 시 측정해상도 향상 기법)

  • Son, Ki-Sung;Jeon, Hyeong-Seop;Han, Soon Woo;Park, Jong Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.716-723
    • /
    • 2014
  • Vibration measurement using image processing is a fully non-contact measurement method and has many application fields. The resolution of vibration data measured by image processing depends on the camera performance and is lower than that measured by accelerometers. This work discusses the method to increase resolution of vibration signal measured by image processing based on the image mosaic technique with a high-power lens. The working principle of resolution enhancement was explained theoretically and verified by several experiments. It was shown that the proposed method can measure vibrations of relatively large scale structures with increased resolutions.

An Image Resolution Enhancement Method Using Loss Information Estimation (손실 정보 추정을 이용한 영상 해상도 향상 기법)

  • Kim, Won-Hee;Kim, Gil-Ho;Kim, Jong-Nam
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.657-660
    • /
    • 2009
  • An image interpolation is a basis technique for various image processing and is required to minimize approaches for image quality deterioration. In this paper, we propose an improved bilinear interpolation using loss information estimation. In the proposed algorithm, we estimate loss information of low resolution image using down-sampling and interpolation of acquisition low resolution. The estimated loss information is utilized interpolated image, and it decrease image quality deterioration. Our experiments obtained the average PSNR 0.97~1.79dB which is improved results better than conventional method for sensitive image quality. Also, subjective image quality with edge region is more clearness. The proposed method may be helpful for applications in various multimedia systems such as image resolution enhancement and image restoration.

  • PDF

Loss Information Estimation and Image Resolution Enhancement Technique using Low (하위 레벨 보간을 이용한 손실 정보 추정과 영상 해상도 향상 기법)

  • Kim, Won-Hee;Kim, Jong-Nam
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.18-26
    • /
    • 2009
  • Image resolution enhancement algorithm is a basic technique for image enlargement and restoration. The main problem is the image quality degradation such as blurring or blocking effects. In this paper, we propose loss information estimation and image resolution enhancement method using low level interpolation method. In the proposed method, loss information is computed by downsampling -interpolation process of obtained low resolution image. We estimate loss information of high resolution image using interpolation of the computed loss information. Lastly, we add up interpolated high resolution image and the estimated loss information which is applied a weight factor. Our experiments obtained the average PSNR 1.4dB which is improved results better than conventional algorithm. Also subjective image quality is more clearness and distinctness. The proposed method may be helpful for various video applications which required improvement of image.

Image Resolution Enhancement by Improved S&A Method using POCS (POCS 이론을 이용한 개선된 S&A 방법에 의한 영상의 화질 향상)

  • Yoon, Soo-Ah;Lee, Tae-Gyoun;Lee, Sang-Heon;Son, Myoung-Kyu;Kim, Duk-Gyoo;Won, Chul-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.11
    • /
    • pp.1392-1400
    • /
    • 2011
  • In most digital imaging applications, high-resolution images or videos are usually desired for later image processing and analysis. The image signal obtained from general imaging system occurs image degradation during the process of image acquirement caused by the optics, physical constraints and the atmosphere effects. Super-resolution reconstruction, one of the solution to address this problem, is image reconstruction technique that produces a high-resolution image from several low-resolution frames in video sequences. In this paper, we propose an improved super-resolution method using Projection onto Convex Sets (POCS) method based on Shift & Add (S&A). The image using conventional algorithms is sensitive to noise. To solve this problem, we propose a fusion algorithm of S&A and POCS. Also we solve the problem using BLPF (Butterworth Low-pass Filter) in frequency domain as optical blur. Our method is robust to noise and has sharpness enhancement ability. Experimental results show that the proposed super-resolution method has better resolution enhancement performance than other super-resolution methods.

An Image Resolution Enhancement Algorithm Using Low Level Interpolation (하위 레벨 보간을 이용한 영상 해상도 향상 기술)

  • Kim, Won-Hee;Kim, Jong-Nam
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.865-869
    • /
    • 2009
  • An image resolution enhancement is mainly utilized as pre-processing technique for various image processing application. It requires to decrease image quality deterioration such as blurring. In this paper, we propose an image resolution enhancement algorithm using low level interpolation. In the proposed algorithm, we calculate an error using low level interpolation, estimate an error image from the calculated error. The estimated error image is added interpolated high resolution image, it become lastly reconstruction image. Our experiments obtained the average PSNR about 1dB which is improved results better than conventional method for sensitive image quality. Also, subjective image quality with edge region is more clearness. The proposed method may be helpful for applications in various multimedia systems such as image restoration.

  • PDF

Super Resolution Image Reconstruction using the Maximum A-Posteriori Method

  • Kwon Hyuk-Jong;Kim Byung-Guk
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.115-118
    • /
    • 2004
  • Images with high resolution are desired and often required in many visual applications. When resolution can not be improved by replacing sensors, either because of cost or hardware physical limits, super resolution image reconstruction method is what can be resorted to. Super resolution image reconstruction method refers to image processing algorithms that produce high quality and high resolution images from a set of low quality and low resolution images. The method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, including satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. The method can be either the frequency domain approach or the spatial domain approach. Much of the earlier works concentrated on the frequency domain formulation, but as more general degradation models were considered, later researches had been almost exclusively on spatial domain formulations. The method in spatial domains has three stages: i) motion estimate or image registration, ii) interpolation onto high resolution grid and iii) deblurring process. The super resolution grid construction in the second stage was discussed in this paper. We applied the Maximum A­Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from a set of low resolution images and compared the results with those from other known interpolation methods.

  • PDF

Quantitative Analysis of Spatial Resolution for the Influence of the Focus Size and Digital Image Post-Processing on the Computed Radiography (CR(Computed Radiography)에서 초점 크기와 디지털영상후처리에 따른 공간분해능의 정량적 분석)

  • Seoung, Youl-Hun
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.407-414
    • /
    • 2014
  • The aim of the present study was to carry out quantitative analysis of spatial resolution for the influence of the focus size and digital image post-processing on the Computed Radiography (CR). The modulation transfer functions of an edge measuring method (MTF) was used for the evaluation of the spatial resolution. The focus size of X-ray tube was used the small focus (0.6 mm) and the large focus (1.2 mm). We evaluated the 50% and 10% of MTF for the enhancement of edge and contrast by using multi-scale image contrast amplification (MUSICA) in digital image post-processing. As a results, the edge enhancement than the contrast enhancement were significantly higher the spatial resolution of MTF 50% in all focus. Also the spatial resolution of the obtained images in a large focus were improved by digital image processing. In conclusion, the results of this study should serve as a basic data for obtain the high resolution clinical images, such as skeletal and chest images on the CR.