• Title/Summary/Keyword: Image Rendering

Search Result 543, Processing Time 0.023 seconds

Volume Rendering using Grid Computing for Large-Scale Volume Data

  • Nishihashi, Kunihiko;Higaki, Toru;Okabe, Kenji;Raytchev, Bisser;Tamaki, Toru;Kaneda, Kazufumi
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.111-120
    • /
    • 2010
  • In this paper, we propose a volume rendering method using grid computing for large-scale volume data. Grid computing is attractive because medical institutions and research facilities often have a large number of idle computers. A large-scale volume data is divided into sub-volumes and the sub-volumes are rendered using grid computing. When using grid computing, different computers rarely have the same processor speeds. Thus the return order of results rarely matches the sending order. However order is vital when combining results to create a final image. Job-Scheduling is important in grid computing for volume rendering, so we use an obstacle-flag which changes priorities dynamically to manage sub-volume results. Obstacle-Flags manage visibility of each sub-volume when line of sight from the view point is obscured by other subvolumes. The proposed Dynamic Job-Scheduling based on visibility substantially increases efficiency. Our Dynamic Job-Scheduling method was implemented on our university's campus grid and we conducted comparative experiments, which showed that the proposed method provides significant improvements in efficiency for large-scale volume rendering.

Physically-based Haptic Rendering of a Deformable Object Using Two Dimensional Visual Information for Teleoperation (원격조작을 위한 이차원 영상정보를 이용한 변형체의 물리적 모델 기반 햅틱 렌더링)

  • Kim, Jung-Sik;Kim, Jung
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02c
    • /
    • pp.19-24
    • /
    • 2008
  • This paper presents a physically-based haptic rendering algorithm for a deformable object based on visual information about the intervention between a tool and a real object in a remote place. The physically-based model of a deformable object is created from the mechanical properties of the object and the captured image obtained with a CCD camera. When a slave system exerts manipulation tasks on a deformable object, the reaction force for haptic rendering is computed using boundary element method. Snakes algorithm is used to obtain the geometry information of a deformable object. The proposed haptic rendering algorithm can provide haptic feedback to a user without using a force transducer in a teleoperation system.

  • PDF

Development of a Multi-view Image Generation Simulation Program Using Kinect (키넥트를 이용한 다시점 영상 생성 시뮬레이션 프로그램 개발)

  • Lee, Deok Jae;Kim, Minyoung;Cho, Yongjoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.818-819
    • /
    • 2014
  • Recently there are many works conducted on utilizing the DIBR (Depth-Image-Based Rendering) based intermediate images for the three-dimensional displays that do not require the use of stereoscopic glasses. However the prior works have used expensive depth cameras to obtain high-resolution depth images since DIBR-based intermediate image generation method requires the accuracy for depth information. In this study, we have developed the simulation to generate multi-view intermediate images based on the depth and color images using Microsoft Kinect. This simulation aims to support the acquisition of multi-view intermediate images utilizing the low-resolution depth and color image from Kinect, and provides the integrated service for the quality evaluation of the intermediate images. This paper describes the architecture and the system implementation of this simulation program.

  • PDF

An Efficient Perspective Projection using $\textrm{VolumePro}^{TM}$ Hardware (볼륨프로 하드웨어를 이용한 효율적인 투시투영 방법)

  • 임석현;신병석
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.195-203
    • /
    • 2004
  • VolumePro is a real-time volume rendering hardware for consumer PCs. However it cannot be used for the applications requiring perspective projection such as virtual endoscopy since it provides only orthographic projection. Several methods have been presented to approximate perspective projection by decomposing a volume into slabs and applying successive parallel projection to thou. But it takes a lot of time since the entire region of every slab should be processed, which does not contribute to final image. In this paper, we propose an efficient perspective projection method that makes the use of several sub-volumes with cropping feature of VolumePro. It reduces the rendering time in comparison to slab-based method without image quality deterioration since it processes only the parts contained in the view frustum.

AI-based Automatic Spine CT Image Segmentation and Haptic Rendering for Spinal Needle Insertion Simulator (척추 바늘 삽입술 시뮬레이터 개발을 위한 인공지능 기반 척추 CT 이미지 자동분할 및 햅틱 렌더링)

  • Park, Ikjong;Kim, Keehoon;Choi, Gun;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.316-322
    • /
    • 2020
  • Endoscopic spine surgery is an advanced surgical technique for spinal surgery since it minimizes skin incision, muscle damage, and blood loss compared to open surgery. It requires, however, accurate positioning of an endoscope to avoid spinal nerves and to locate the endoscope near the target disk. Before the insertion of the endoscope, a guide needle is inserted to guide it. Also, the result of the surgery highly depends on the surgeons' experience and the patients' CT or MRI images. Thus, for the training, a number of haptic simulators for spinal needle insertion have been developed. But, still, it is difficult to be used in the medical field practically because previous studies require manual segmentation of vertebrae from CT images, and interaction force between the needle and soft tissue has not been considered carefully. This paper proposes AI-based automatic vertebrae CT-image segmentation and haptic rendering method using the proposed need-tissue interaction model. For the segmentation, U-net structure was implemented and the accuracy was 93% in pixel and 88% in IoU. The needle-tissue interaction model including puncture force and friction force was implemented for haptic rendering in the proposed spinal needle insertion simulator.

Parallel Processing for Integral Imaging Pickup Using Multiple Threads

  • Jang, Young-Hee;Park, Chan;Park, Jae-Hyeung;Kim, Nam;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.5 no.4
    • /
    • pp.30-34
    • /
    • 2009
  • Many studies have been done on the integral imaging pickup whose objective is to get efficiently elemental images from a lens array with respect to three-dimensional (3D) objects. In the integral imaging pickup process, it is necessary to render an elemental image from each elemental lens in a lens array for 3D objects, and then to combine them into one total image. The multiple viewpoint rendering (MVR) is one of various methods for integral imaging pickup. This method, however, has the computing and rendering time problem for obtaining element images from a lot of elemental lens. In order to solve the problems, in this paper, we propose a parallel MVR (PMVR) method to generate elemental images in a parallel through distribution of elemental lenses into multiple threads simultaneously. As a result, the computation time of integral imaging using PMVR is reduced significantly rather than a sequential approach and then we showed that the PMVR is very useful.

A Tone Compression Model for the Compensation of White Point Shift Generated from HDR Rendering (HDR 렌더링으로 인한 화이트 포인트 이동의 보상을 위한 톤 압축 모델)

  • Chae, Seok-Min;Lee, Sung-Hak;Kwon, Hyuk-Ju;Sohng, Kyu-Ik
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2012
  • Recently, a new image appearance model, named iCAM06, was developed for High-Dynamic-Range (HDR) image rendering. The dynamic range of a HDR image needs to be mapped on the range of output devices, which is called the tone reproduction or tone mapping. The iCAM06, the representative HDR rendering algorithm also uses the tone compression using a S-curve mapping function for image reproduction on the dynamic range of output devices. However the iCAM06 occurs white point shift during its tone compression process. Therefore, we propose a compensation method for white point shift problem using the corrected channel gain function. Experiment results show that the proposed method has better performance than the iCAM06.

A Study on the Multiple Texture Rendering System for 3D Image Signal Recognition (3차원 영상인식을 위한 다중영상매핑 시스템에 대한 연구)

  • Kim, Sangjune;Park, Chunseok
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.1
    • /
    • pp.47-53
    • /
    • 2016
  • Techniques to be developed in this study is intended to apply to an existing integrated control system to "A Study on the multiple Texture Rendering system for three-dimensional Image Signal Recognition" technology or become a center of the building control system in real time video. so, If the study plan multi-image mapping system developed, CCTV camera technology and network technology alone that is, will be a number of security do not have to build a linked system personnel provide services that control while the actual patrol, the other if necessary systems and linked to will develop a system that can reflect the intention Ranger.

Efficient application method for materials in Lightscape (Lightscape 에서의 재질에 따른 효과적인 표현방법)

  • Park, Ji-Ae;Chang, Jun-Ho;Choi, An-Seop
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.184-188
    • /
    • 2006
  • Lightscape is a visual rendering software enabling higher dimensional 3D image production using rendering as well. However, direct light simulation showed that more realistic feature of material-specific texture or color could be achieved by adjusting options. Accordingly, this study is to generate optimal values of options and achieve more realistic images by varying such values according to individual materials in order to create better quality simulation images using Lightscape.

  • PDF

Accurate and efficient GPU ray-casting algorithm for volume rendering of unstructured grid data

  • Gu, Gibeom;Kim, Duksu
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.608-618
    • /
    • 2020
  • We present a novel GPU-based ray-casting algorithm for volume rendering of unstructured grid data. Our volume rendering system uses a ray-casting method that guarantees accurate rendering results. We also employ the per-pixel intersection list concept in the Bunyk algorithm to guarantee an accurate result for non-convex meshes. For efficient memory access for the lists on the GPU, we represent the intersection lists for all faces as an array with our novel construction algorithm. With the intersection lists, we perform ray-casting on a GPU, and a GPU thread handles each ray. To increase ray-coherency in a thread block and improve memory access efficiency, we extend a prior image-tile-based work distribution method to fit modern GPU architectures. We also show that a prior approach using a per-thread local buffer to reduce redundant computation is not appropriate for modern GPU architectures. Instead, we take an on-demand calculation strategy that achieves better performance even though it allows duplicate computations. We applied our method to three unstructured grid datasets with different characteristics. With a GPU, our method achieved up to 36.5 times higher performance for the ray-casting process and 19.7 times higher performance for the whole volume rendering process compared with the Bunyk algorithm using a CPU core. Also, our approach showed up to 8.2 times higher performance than a GPU-based cell projection method while generating more accurate rendering results. These results demonstrate the efficiency and accuracy of our method.