• Title/Summary/Keyword: Image Rejection Filter

Search Result 34, Processing Time 0.019 seconds

A Study of DAB Tuner Module for ITS service (ITS서비스를 위한 DAB 튜너 모듈의 연구)

  • Kim Min-cheol;Sim Wan-ki;Kim Sang-woo;Kim Bok-ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.2 s.3
    • /
    • pp.1-12
    • /
    • 2003
  • DAB(Digital audio broadcasting) is a next generation radio broadcasting system which provides CD quality audio, various data services and superior reception ability when moving. Also, it can show traffic informations and news literally or graphically. In this paper, we design and fabricate the DAB tuner for ITS service that follows Eureka-147 and ETSI 300 401 specifications. This small-sized tuner can be adopted to mny electronic equipments such as a Hi-Fi audio, DVD player, car audio system etc.. The overall performance of the tuner depends on a phase noise of VCO and the sensitivity of the receiving system is influenced by LNA, image rejection filter and channel selection filter. All our measurement results satisfy the specification for a DAB system with the return loss of 9dB, the noise figure of 6dB for both Band 111 and L-band and the sensitivity of -97dBm.

  • PDF

Broadband LTCC Receiver Module for Fixed Communication in 40 GHz Band (40 GHz 대역 고정통신용 광대역 LTCC 수신기 모듈)

  • Kim Bong-Su;Kim Kwang-Seon;Eun Ki-Chan;Byun Woo-Jin;Song Myung-Sun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.10 s.101
    • /
    • pp.1050-1058
    • /
    • 2005
  • This paper presents how to design and implement a very compact, cost effective and broad band receiver module for IEEE 802.16 FWA(Fixed Wireless Access) in the 40 GHz band. The presented receiver module is fabricated in a multi-layer LTCC(Low Temperature Cofired Ceramic) technology with cavity process to achieve excellent electrical performances. The receiver consists of two MMICs, low noise amplifier and sub-harmonic mixer, an embedded image rejection filter and an IF amplifier. CB-CPW, stripline, several bond wires and various transitions to connect each element are optimally designed to keep transmission loss low and module compact in size. The LTCC is composed of 6 layers of Dupont DP-943 with relative permittivity of 7.1. The thickness of each layer is 100 um. The implemented module is $20{\times}7.5{\times}1.5\;mm^3$ in size and shows an overall noise figure of 4.8 dB, an overall down conversion gain of 19.83 dB, input P1 dB of -22.8 dBm and image rejection value of 36.6 dBc. Furthermore, experimental results demonstrate that the receiver module is suitable for detection of Digital TV signal transmitted after up-conversion of $560\~590\;MHz$ band to 40 GHz.

Millimeter-wave LTCC Front-end Module for Highly Integrated Transceiver (고집적 송수신기를 위한 밀리미터파 LTCC Front-end 모듈)

  • Kim, Bong-Su;Byun, Woo-Jin;Kim, Kwang-Seon;Eun, Ki-Chan;Song, Myung-Sun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.967-975
    • /
    • 2006
  • In this paper, design and implementation of a very compact and cost effective front-end module are presented for IEEE 802.16 FWA(fixed Wireless Access) in the 40 GHz band. A multi-layer LTCC(Low Temperature Co-fred Ceramic) technology with cavity process to achieve excellent electrical performances is used to fabricate the front-end module. The wirebond matching circuit design of switch input/output port and waveguide transition to connect antenna are optimally designed to keep transmission loss low. To reduce the size of the front-end module, the dielectric waveguide filter is developed instead of the metal waveguide filter. The LTCC is composed of 6 layers(with the thickness of a layer of 100 um) having a relative dielectric constant of 7.1. The front-end module is implemented in a volume of $30{\times}7{\times}0.8mm^3$ and shows an overall insertion loss < 5.3 dB, and image rejection value > 49 dB.

Image Enhancement of the Weathered Zone and Bedrock Surface with a Radial Transform in Engineering Seismic Data (엔지니어링 탄성파자료에서 방사변환을 통한 풍화대 및 기반암 표면의 영상강화)

  • Kim, Ji-Soo;Jeon, Su-In;Lee, Sun-Joong
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.459-466
    • /
    • 2012
  • A difficulty encountered in engineering seismic mapping is that reflection events from shallow discontinuities are commonly overlapped with coherent noise such as air wave, direct waves, head waves, and high-amplitude surface waves. Here, the radial trace transform, a simple geometric re-mapping of a trace gather (x-t domain) to another trace gather (v-t domain), is applied to investigate the rejection effect of coherent linear noises. Two different types of data sets were selected as a representative database: good-quality data for intermediate sounding (hundreds of meters) in a sedimentary basin and very noisy data for shallow (${\leq}50m$) mapping of the weathered zone and bedrock surface. Results obtained with cascaded application of the radial transform and low-cut filtering proved to be as good as, or better than, those produced using f-k filtering, and were especially effective for air wave and direct wave. This simple transform enables better understanding of the characteristics of various types of noise in the RT domain, and can be generally applied to overcoming diffractions and back-scatterings caused by joints, fractures, and faults commonly that are encountered in geotechnical problems.