• Title/Summary/Keyword: Image Processor

Search Result 459, Processing Time 0.03 seconds

A Study on Automatic Interface Generation by Protocol Mapping (Protocol Mapping을 이용한 인터페이스 자동생성 기법 연구)

  • Lee Ser-Hoon;Kang Kyung-Goo;Hwang Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.820-829
    • /
    • 2006
  • IP-based design methodology has been popularly employed for SoC design to reduce design complexity and to cope with time-to-market pressure. Due to the request for high performance of current mobile systems, embedded SoC design needs a multi-processor to manage problems of high complexity and the data processing such as multimedia, DMB and image processing in real time. Interface module for communication between system buses and processors are required, since many IPs employ different protocols. High performance processors require interface module to minimize the latency of data transmission during read-write operation and to enhance the performance of a top level system. This paper proposes an automatic interface generation system based on FSM generated from the common protocol description sequence of a bus and an IP. The proposed interface does not use a buffer which stores data temporally causing the data transmission latency. Experimental results show that the area of the interface circuits generated by the proposed system is reduced by 48.5% on the average, when comparing to buffer-based interface circuits. Data transmission latency is reduced by 59.1% for single data transfer and by 13.3% for burst mode data transfer. By using the proposed system, it becomes possible to generate a high performance interface circuit automatically.

Artificial Vision Project by Micro-Bio Technologies

  • Kim Sung June;Jung Hum;Yu Young Suk;Yu Hyeong Gon;Cho Dong il;Lee Byeong Ho;Ku Yong Sook;Kim Eun Mi;Seo Jong Mo;Kim Hyo kyum;Kim Eui tae;Paik Seung June;Yoon Il Young
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.51-78
    • /
    • 2002
  • A number of research groups worldwide are studying electronic implants that can be mounted on retinal optic nerve/visual cortex to restore vision of patients suffering from retinal degeneration. The implants consist of a neural interface made of biocompatible materials, one or more integrated circuits for stimuli generation, a camera, an image processor, and a telemetric channel. The realization of these classes of neural prosthetic devices is largely due to the explosive development of micro- and nano-electronics technologies in the late $20^{th}$ century and biotechnologies more recently. Animal experiments showed promise and some human experiments are in progress to indicate that recognition of images can be obtained and improved over time. We, at NBS-ERC of SNU, have started our own retinal implant project in 2000. We have selected polyimide as the biomaterial for an epi-retinal stimulator. In-vitro and in-vivo biocompatibility studies have been performed on the electrode arrays. We have obtained good affinity to retinal pigment epithelial cells and no harmful effect. The implant also showed very good stability and safety in rabbit eye for 12 weeks. We have also demonstrated that through proper stimulation of inner retina, meaning vision can be obtained.

  • PDF

Design of UWB/WiFi Module based Wireless Transmission for Endoscopic Camera (UWB/WiFi 모듈 기반의 내시경 카메라용 무선전송 설계)

  • Shim, Dongha;Lee, Jaegon;Yi, Jaeson;Cha, Jaesang;Kang, Mingoo
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Ultra-wide-angle wireless endoscopes are demonstrated in this paper. The endoscope is composed of an ultra-wide-angle camera module and wireless transmission module. A lens unit with the ultra-wide FOV of 162 degrees is designed and manufactured. The lens, image sensor, and camera processor unit are packaged together in a $3{\times}3{\times}9-cm3$ case. The wireless transmission modules are implemented based on UWB- and WiFi-based platform, respectively. The UWB-based module can transmit HD video to a computer in resolution of $2048{\times}1536$ (QXGA) and the frame rate of 15 fps in MJPEG compression mode. The maximum data transfer rate reaches 41.2 Mbps. The FOV and the resolution of the endoscope is comparable to a medical-grade endoscope. The FOV and resolution is ~3X and 16X higher than that of a commercial high-performance WiFi endoscope, respectively. The WiFi-based module streams out video to a smart device with th maximum date transfer rate of 1.5 Mbps at the resolution of $640{\times}480$ (VGA) and the frame rate of 30 fps in MJPEG compression mode. The implemented components show the feasibility of cheap medical-grade wireless electronic endoscopes, which can be effectively used in u-healthcare, emergency treatment, home-healthcare, remote diagnosis, etc.

Hardware Design of SURF-based Feature extraction and description for Object Tracking (객체 추적을 위한 SURF 기반 특이점 추출 및 서술자 생성의 하드웨어 설계)

  • Do, Yong-Sig;Jeong, Yong-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.83-93
    • /
    • 2013
  • Recently, the SURF algorithm, which is conjugated for object tracking system as part of many computer vision applications, is a well-known scale- and rotation-invariant feature detection algorithm. The SURF, due to its high computational complexity, there is essential to develop a hardware accelerator in order to be used on an IP in embedded environment. However, the SURF requires a huge local memory, causing many problems that increase the chip size and decrease the value of IP in ASIC and SoC system design. In this paper, we proposed a way to design a SURF algorithm in hardware with greatly reduced local memory by partitioning the algorithms into several Sub-IPs using external memory and a DMA. To justify validity of the proposed method, we developed an example of simplified object tracking algorithm. The execution speed of the hardware IP was about 31 frame/sec, the logic size was about 74Kgate in the 30nm technology with 81Kbytes local memory in the embedded system platform consisting of ARM Cortex-M0 processor, AMBA bus(AHB-lite and APB), DMA and a SDRAM controller. Hence, it can be used to the hardware IP of SoC Chip. If the image processing algorithm akin to SURF is applied to the method proposed in this paper, it is expected that it can implement an efficient hardware design for target application.

Novel Radix-26 DF IFFT Processor with Low Computational Complexity (연산복잡도가 적은 radix-26 FFT 프로세서)

  • Cho, Kyung-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • Fast Fourier transform (FFT) processors have been widely used in various application such as communications, image, and biomedical signal processing. Especially, high-performance and low-power FFT processing is indispensable in OFDM-based communication systems. This paper presents a novel radix-26 FFT algorithm with low computational complexity and high hardware efficiency. Applying a 7-dimensional index mapping, the twiddle factor is decomposed and then radix-26 FFT algorithm is derived. The proposed algorithm has a simple twiddle factor sequence and a small number of complex multiplications, which can reduce the memory size for storing the twiddle factor. When the coefficient of twiddle factor is small, complex constant multipliers can be used efficiently instead of complex multipliers. Complex constant multipliers can be designed more efficiently using canonic signed digit (CSD) and common subexpression elimination (CSE) algorithm. An efficient complex constant multiplier design method for the twiddle factor multiplication used in the proposed radix-26 algorithm is proposed applying CSD and CSE algorithm. To evaluate performance of the previous and the proposed methods, 256-point single-path delay feedback (SDF) FFT is designed and synthesized into FPGA. The proposed algorithm uses about 10% less hardware than the previous algorithm.

Development of online drone control management information platform (온라인 드론방제 관리 정보 플랫폼 개발)

  • Lim, Jin-Taek;Lee, Sang-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.193-198
    • /
    • 2021
  • Recently, interests in the 4th industry have increased the level of demand for pest control by farmers in the field of rice farming, and the interests and use of agricultural pest control drones. Therefore, the diversification of agricultural control drones that spray high-concentration pesticides and the increase of agricultural exterminators due to the acquisition of national drone certifications are rapidly developing the agricultural sector in the drone industry. In addition, as detailed projects, an effective platform is required to construct large-scale big data due to pesticide management, exterminator management, precise spraying, pest control work volume classification, settlement, soil management, prediction and monitoring of damages by pests, etc. and to process the data. However, studies in South Korea and other countries on development of models and programs to integrate and process the big data such as data analysis algorithms, image analysis algorithms, growth management algorithms, AI algorithms, etc. are insufficient. This paper proposed an online drone pest control management information platform to meet the needs of managers and farmers in the agricultural field and to realize precise AI pest control based on the agricultural drone pest control processor using drones and presented foundation for development of a comprehensive management system through empirical experiments.

Improving target recognition of active sonar multi-layer processor through deep learning of a small amounts of imbalanced data (소수 불균형 데이터의 심층학습을 통한 능동소나 다층처리기의 표적 인식성 개선)

  • Young-Woo Ryu;Jeong-Goo Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.225-233
    • /
    • 2024
  • Active sonar transmits sound waves to detect covertly maneuvering underwater objects and detects the signals reflected back from the target. However, in addition to the target's echo, the active sonar's received signal is mixed with seafloor, sea surface reverberation, biological noise, and other noise, making target recognition difficult. Conventional techniques for detecting signals above a threshold not only cause false detections or miss targets depending on the set threshold, but also have the problem of having to set an appropriate threshold for various underwater environments. To overcome this, research has been conducted on automatic calculation of threshold values through techniques such as Constant False Alarm Rate (CFAR) and application of advanced tracking filters and association techniques, but there are limitations in environments where a significant number of detections occur. As deep learning technology has recently developed, efforts have been made to apply it in the field of underwater target detection, but it is very difficult to acquire active sonar data for discriminator learning, so not only is the data rare, but there are only a very small number of targets and a relatively large number of non-targets. There are difficulties due to the imbalance of data. In this paper, the image of the energy distribution of the detection signal is used, and a classifier is learned in a way that takes into account the imbalance of the data to distinguish between targets and non-targets and added to the existing technique. Through the proposed technique, target misclassification was minimized and non-targets were eliminated, making target recognition easier for active sonar operators. And the effectiveness of the proposed technique was verified through sea experiment data obtained in the East Sea.

The Actual State and the Utilization for Dental Radiography in Korea (국내 치과방사선의 현황 및 이용 실태)

  • Shin, Gwi-Soon;Kim, You-Hyun;Lee, Bo-Ram;Kim, Se-Young;Lee, Gui-Won;Park, Chang-Seo;Park, Hyok;Chang, Kye-Yong
    • Journal of radiological science and technology
    • /
    • v.33 no.2
    • /
    • pp.109-120
    • /
    • 2010
  • The purpose of this study was first to analyze the utilization of dental examination through questionnaire to develop a diagnostic reference level of patient doses for dental radiography in korea. 77 dental institutions were classified into three groups: A group for the dental hospitals of the college of dentistry (11 institutions), B group for dental hospitals (30 institutions) and C group for dental clinics (36 institutions). The results were as follows : The mean numbers of unit chairs and medical staffs were 140.2, 15.3 and 5.8 sets, 112.6, 7.3 and 1.7 dentists, 3.1, 0.5 and no one radiologic technologists, and 19.7, 12.5 and 3.3 dental hygienists in A, B and C groups, respectively. The mean numbers of dental X-ray equipments were 14.64, 3.21 and 2.19 in A, B and C groups, respectively. Intraoral dental X-ray unit was used the most, the following equipments were panoramic, cephalometric, and cone-beam CT units. The most used X-ray imaging system was also digital system (above 50%) in all three groups. Insight dental film (Kodak, USA) having high sensitivity was routinely used for periapical radiography. The automatic processor was not used in many dental institutions, but the film-holding device was used in many dental institutions. The utilization rates of PACS in A, B and C groups were 90.9%, 83.3% and 16.7% respectively, and the PACS software program was used the most PiView STAR (Infinitt, Korea). The annual mean number of radiographic cases in one dental institution in 2008 for A group was 6.8 times and 21.2 times more than those for B and C groups, and periapical and panoramic radiographs were taken mostly. Tube voltage (kVp) and tube current (mA) for periapical radiography were similar in all three groups, but exposure time in C group was 12.0 times and 3.5 times longer than those in B and C groups. The amount of radiation exposure in C group, in which dental hygienists take dental radiographs, was more than those in other groups. The exposure parameters for panoramic radiography were similar in all three groups. In conclusion, the exposure parameters in dental radiography should be determined with reference level, not past experiences. Use of automatic processor and film-holding devices reduces the radiation exposure in film system. The quality assurance of dental equipments are necessary for the reduction of the patient dose and the improvement of X-ray image quality.

An Implementation of OTB Extension to Produce TOA and TOC Reflectance of LANDSAT-8 OLI Images and Its Product Verification Using RadCalNet RVUS Data (Landsat-8 OLI 영상정보의 대기 및 지표반사도 산출을 위한 OTB Extension 구현과 RadCalNet RVUS 자료를 이용한 성과검증)

  • Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.449-461
    • /
    • 2021
  • Analysis Ready Data (ARD) for optical satellite images represents a pre-processed product by applying spectral characteristics and viewing parameters for each sensor. The atmospheric correction is one of the fundamental and complicated topics, which helps to produce Top-of-Atmosphere (TOA) and Top-of-Canopy (TOC) reflectance from multi-spectral image sets. Most remote sensing software provides algorithms or processing schemes dedicated to those corrections of the Landsat-8 OLI sensors. Furthermore, Google Earth Engine (GEE), provides direct access to Landsat reflectance products, USGS-based ARD (USGS-ARD), on the cloud environment. We implemented the Orfeo ToolBox (OTB) atmospheric correction extension, an open-source remote sensing software for manipulating and analyzing high-resolution satellite images. This is the first tool because OTB has not provided calibration modules for any Landsat sensors. Using this extension software, we conducted the absolute atmospheric correction on the Landsat-8 OLI images of Railroad Valley, United States (RVUS) to validate their reflectance products using reflectance data sets of RVUS in the RadCalNet portal. The results showed that the reflectance products using the OTB extension for Landsat revealed a difference by less than 5% compared to RadCalNet RVUS data. In addition, we performed a comparative analysis with reflectance products obtained from other open-source tools such as a QGIS semi-automatic classification plugin and SAGA, besides USGS-ARD products. The reflectance products by the OTB extension showed a high consistency to those of USGS-ARD within the acceptable level in the measurement data range of the RadCalNet RVUS, compared to those of the other two open-source tools. In this study, the verification of the atmospheric calibration processor in OTB extension was carried out, and it proved the application possibility for other satellite sensors in the Compact Advanced Satellite (CAS)-500 or new optical satellites.