본 연구는 고성능 전개판을 개발하기 위하여 전개판 주변의 유동장을 계측할 수 있는 해석 방법을 제시하고자 하였다. 실험 방법으로는 CFD를 이용한 유동장의 수치 해석과 유동장의 정량적, 정성적 계측이 가능한 PIV 실험방법을 사용하였다. 본 실험에서는 전개판 주변의 가시화된 영상을 PIV 기법을 이용한 화상처리로 유동특성을 해석하였으며, 이 결과를 CFD에 의한 해석 결과와 유동 패턴을 비교하였다. 또한, 회류 수조에서의 양력 계수 및 항력계수의 계측 결과를 상호 비교 하였다. 그 결과, 수치 해석된 결과와 PIV의 실험 결과는 정성적으로 매우 잘 일치하였으며, 물리적으로 타당성을 확인할 수 있었다. 그 결과는 다음과 같다. (1) 전개판의 유동장 분석을 위하여 레이저 광원을 이용한 가시화 실험을 실시하고, PIV 기법으로 화상분석을 실시하였으며, 유동입자의 흐름으로도 충분한 정성적인 유체운동의 경향을 파악할 수 있었다 (2) PIV해석결과가 정량적인 결과이므로 이를 다양한 후처리 방법을 통해 속도벡터장, 순간 유동장, 평균 와도로 나타내어 유동장의 변화를 확인할 수 있었다. (3) 최대전개력계수가 나타난 영각 24$^{\circ}$에서 비교한 CFD와 PIV 해석 결과, 유동 패턴은 유사하였고, 두 경우 모두 전개판 후연에서 약간의 경계층 박리가 발생하였으나 양호한 흐름을 보였다. (4) PIV에 의한 속도 벡터도, 순간 유선도, 평균 와도로 후처리한 결과, 영각 24$^{\circ}$에서부터 경계층 박리 현상이 일어나기 시작하여, 영각 28$^{\circ}$이상이 되면 심하게 전연으로 발생지점이 이동하게 되고, 그 폭도 확대됨을 확인할 수 있었다.
안면 비대칭은 다양한 원인에 의해 발병되기 때문에 원인 분석이 중요하고, 평가하는데 있어서 정량적인 지표가 필요하다. 본 연구에서는 웹켐을 이용하여 얻은 영상을 영상처리 및 연산부를 거쳐 마커를 추적하고 마커 간의 거리를 계산하여 안면 마비를 평가하는데 정량적인 지표로 사용하던 Nottingham Grading System을 안면 비대칭을 평가하는데 적용해 보았다. 기존 Nottingham Grading System은 표정 변화에 따른 안면부의 특징점 들간의 거리변화를 합산하여 좌, 우를 비교하기 때문에 특정 케이스의 경우 측정 오류를 불러일으키는 문제점이 있었다. 기존 Nottingham Grading System과 문제점을 보완하여 개선시킨 평가지표를 이용하여 안면비대칭인 피실험자와 정상의 피실험자를 비교하였다. 기존 Nottingham Grading System에서는 안면 비대칭의 경우 99.0%, 정상의 경우 95.0%로 둘 다 정상 범위 속에 포함되었다. 하지만 개선시킨 Nottingham Grading System에서는 안면 비대칭의 경우 74.0%, 정상의 경우 93.2%의 결과가 나왔다. 본 연구의 결과로 인해, 개선시킨 Nottingham Grading System은 각 부위별 상세한 평가 및 진단이 가능하고, 기존 Nottingham Grading System의 '문제점을 보완하였음을 보여주었다.
분광법을 이용한 비파괴 신선도 측정 연구들이 여러 차례 진행되어 왔지만, 기실과 신선도 간의 연구가 진행되지 않았다. 따라서 본 연구에서는 비파괴 방식으로 계란 내부의 기실을 시각적으로 계측하며 정량화하는 시스템을 개발함에 목적이 있다. 소형 챔버로 구성된 실험 환경은 2개의 850nm 대역의 IR 레이저, 2개의 서보모터, IR Cut RGB 카메라로 구성되며 계란 기실의 영상을 획득한다. 본 논문에서 계란의 기실 부피 비율이 2.9% 이하이고 밀도가 0.9800($g/cm^3$) 이상이면 60 이상의 호우 유닛 값을 갖는 B등급 이상의 신선한 계란으로 판단한다. 상기 결과 중량측정용 저울, 비파괴 판정시스템과 신선도 측정 알고리즘이 있으면 계란을 파괴하지 않고 B등급 이상의 판매 가능한 계란을 판정할 수 있음을 의미한다. 향후 계란의 신선도 판정을 할 때 계란의 기실 부피 비율과 밀도를 이용하여 계란 신선도를 비파괴 적으로 판별할 수 있는 기초 자료로 사용할 수 있기를 기대한다.
본 연구에서는 전동 이동 보조기기를 이용하는 교통약자의 이동을 저해하거나 불편을 초래하는 횡단 보도, 측구, 맨홀, 점자블록, 부분 경사로, 임시안전 방호벽, 계단, 경사형 연석과 같은 주행 장애물 객체를 촬영한 뒤 객체를 분류하고 이를 자동 인식하는 최적의 AI 모델을 개발하여 주행 중인 전동 이동 보조기기의 전방에 나타난 장애물을 효율적으로 판단할 수 있는 알고리즘을 구현하고자 한다. 객체 검출을 높은 확률로 AI 학습이 될 수 있도록 데이터 셋 구축 시 라벨링 형태를 폴리곤 형태로 라벨링 하며, 폴리곤 형태로 라벨링 된 객체를 탐지할 수 있는 Detectron2 프레임워크를 활용하여 Mask R-CNN 모델을 활용하여 개발을 진행하였다. 영상 획득은 일반인과 교통약자의 두 개 그룹으로 구분하여 진행하였고 테스트베드 2개 지역에서 얻어진 영상정보를 확보하였다. Mask R-CNN 학습 결과 파라미터 설정은 IMAGES_PER _BATCH : 2, BASE_LEARNING_RATE 0.001, MAX_ITERATION : 10,000으로 학습한 모델이 68.532로 가장 높은 성능을 보인 것이 확인되어 주행 위험, 장애 요소를 빠르고 정확하게 사용자가 인지할 수 있도록 하는 딥러닝 모델을 구축이 가능한 것을 확인할 수 있었다.
본 연구에서는 전동 이동 보조기를 이용하는 교통약자의 이동을 저해하거나 불편을 초래하는 횡단 보도, 측구, 맨홀, 점자블록, 부분 경사로, 임시안전 방호벽, 계단, 경사형 연석과 같은 주행 장애물 객체를 촬영한 뒤 객체를 분류하고 이를 자동 인식하는 최적의 AI 모델을 개발하여 주행 중인 전동 이동 보조기 전방에 나타난 장애물을 효율적으로 판단할 수 있는 알고리즘을 구현하고자 한다. 객체 검출을 높은 확률로 AI 학습이 될 수 있도록 데이터 셋 구축 시 라벨링 형태를 폴리곤 형태로 라벨링 하며, 폴리곤 형태로 라벨링 된 객체를 탐지할 수 있는 Detectron2 프레임워크를 활용하여 Mask R-CNN 모델을 활용하여 개발을 진행하였다. 영상 획득은 일반인과 교통약자의 두 개 그룹으로 구분하여 진행하였고 테스트베드 2개 지역에서 얻어진 영상정보를 확보하였다. Mask R-CNN 학습 결과 파라미터 설정은 IMAGES_PER _BATCH : 2, BASE_LEARNING_RATE 0.001, MAX_ITERATION : 10,000으로 학습한 모델이 68.532로 가장 높은 성능을 보인 것이 확인되어 주행 위험, 장애 요소를 빠르고 정확하게 사용자가 인지할 수 있도록 하는 딥러닝 모델을 구축이 가능한 것을 확인할 수 있었다.
본 연구에서는 컨테이너 엑스선 검색기의 노후화, 검출 감지기(Sensor) 불량으로 발생되는 검색영상의 잡음(Noise)을 줄이기 위한 알고리즘을 제시고 MATLAB 툴박스에 이를 적용하여 컨테이너 검색영상의 화질(Image Quality)을 개선하고자 하였다. 검색영상은 일반적인 컨테이너 검색기 작동 점검을 위한 일일 점검영상을 활용하였으며 일일점검영상의 수평 영상과 수직 영상을 기준으로 잡음(Noise)을 디지털 방사선 영상에서 가장 기본으로 사용되는 잡음평가 방법인 제곱평균제곱근(Root Mean Square; RMS)으로 평가하였다. 또한 개선된 알고리즘을 실제 컨테이너검색영상에 적용하여 일일 점검영상과 실제 컨테이너 검색영상의 화질을 평가하였다. 그 결과 제곱평균제곱근이 일일 점검영상에서는 수평 영상에서 원본 영상 대비 평균 13.5%, 수직 영상에서는 원본 영상 대비 평균 18.2% 가 낮은 결과치를 나타내었다. 또한 실제 컨테이너 검색영상에서는 수평 영상에서 원본 영상 대비 평균 13.4%, 수직 영상에서는 원본 영상 대비 19.1%가 낮은 결과치를 나타내었다. 이는 영상의 화질개선을 객관적, 시각적으로 확인할 수 있었으며 관세청의 컨테이너 검색영상 판독 업무에 큰 도움이 될 것이라 사료된다.
MRI(Magnetic Resonance Imaging) 영상과 CT(Computed Tomography) 영상과 같은 의료영상에서 잡음제거는 의료영상 시스템의 성능에 중요한 영향을 미친다. 최근 영상처리 기술에 딥러닝(Deep Learning)의 도입으로 잡음제거 방법들의 성능이 향상되고 있다. 그러나 영상영역에서 디테일을 보존하면서 잡음만을 제거하는 것은 한계가 있다. 본 논문에서는 웨이블렛 변환 기반 CNN(Convolutional Neural Network) 모형, 즉 WT-DnCNN(Wavelet Transform-Denoising Convolutional Neural Network) 모형을 통해 잡음제거 성능을 높이고자 한다. 이는 잡음 영상에 웨이블렛 변환을 사용하여 주파수 대역별로 구분하여 일차적으로 잡음을 제거하고, 해당 주파수 대역에서 기존 DnCNN 모형을 적용하여 최종적으로 잡음을 제거하고자 한다. 본 논문에서 제안된 WT-DnCNN 모형의 성능평가를 위해 다양한 잡음, 즉, 가우시안 잡음(Gaussian Noise), 포아송 잡음(Poisson Noise) 그리고 스펙클 잡음(Speckle Noise)에 의해 훼손된 MRI 영상과 CT 영상을 대상으로 실험하였다. 성능 실험 결과, WT-DnCNN 모형은 정성적 비교에서 전통적인 필터 즉, BM3D(Block-Matching and 3D Filtering) 필터뿐만 아니라 기존의 딥러닝 모형인 DnCNN, CDAE(Convolution Denoising AutoEncoder) 모형보다 우수하고, 정량적 비교에서 PSNR(Peak Signal-to-Noise Ratio) 과 SSIM(Structural Similarity Index Measure) 수치는 MRI 영상에서 각각 36~43과 0.93~0.98, CT 영상에서 각각 38~43과 0.95~0.98 정도로 우수한 결과를 보였다. 또한, 모형의 실행 속도 비교에서 DnCNN 모형은 BM3D 모형보다는 훨씬 적게 결렸으나 DnCNN 모형과의 비교에서는 웨이블렛 변환 추가로 인해 오래 걸림을 알 수 있었다.
복합재는 원하는 방향으로 섬유를 배열하여 일체형으로 제조할 수 있는 장점이 있다. 그러나, 복합재는 제작과정에서 층(ply)과 층 사이에 있는 미세 공기, 소재 내부의 수분 또는 경화 중의 부적절한 온도와 압력 등으로 인하여 미세기공이 형성될 수 있으며, 이는 복합재 부품의 기계적 강도저하의 주요 원인으로 평가되고 있다. 본 논문에서는 오토클레이브 진공백 성형법을 이용하여 복합재 두께 별로 공정 조건(경화압력, 압밀시간, 압밀압력, 진공압력)을 변화시켜가며 복합재 패널을 제작하여 미세기공률을 분석하였다. 미세기공률은 이미지 분석법, 용해법, 연소법을 이용하여 평가하였으며, 초음파 감쇠계수와의 연관성을 분석하였다. 실험결과, 미세기공률 분석의 정확도는 용해법이 가장 우수한 것으로 나타났으며, 경화압력이 낮아질수록 미세기공률이 증가하고 높은 초음파 감쇠계수 값을 가짐을 확인하였다. 또한, 동일한 경화압력이라도 적층두께가 증가할수록 초음파 감쇠계수가 증가하고 기공률이 증가됨을 확인하였다.
Recently Artificial Intelligence(AI) has been developed and used in various fields. Especially AI recognition technology can perceive and distinguish images so it should plays a significant role in quality inspection process. For stability of autonomous driving technology, semiconductors inside automobiles must be protected from external electromagnetic wave(EM wave). As a shield film, a thin polymeric material with hole shaped micro-patterns created by a laser processing could be used for the protection. The shielding efficiency of the film can be increased by the hole structure with appropriate pitch and size. However, since the sensitivity of micro-machining for some parameters, the shape of every single hole can not be same, even it is possible to make defective patterns during process. And it is absolutely time consuming way to inspect all patterns by just using optical microscope. In this paper, we introduce a AI inspection system which is based on web site AI tool. And we evaluate the usefulness of AI model by calculate Area Under ROC curve(Receiver Operating Characteristics). The AI system can classify the micro-patterns into normal or abnormal ones displaying the text of the result on real-time images and save them as image files respectively. Furthermore, pressing the running button, the Hardware of robot arm with two Arduino motors move the film on the optical microscopy stage in order for raster scanning. So this AI system can inspect the entire micro-patterns of a film automatically. If our system could collect much more identified data, it is believed that this system should be a more precise and accurate process for the efficiency of the AI inspection. Also this one could be applied to image-based inspection process of other products.
Background: A nondestructive test is commonly used to inspect the surface defects and internal structure of an object without any physical damage. X-rays generated from an electron accelerator or a tube are one of the methods used for nondestructive testing. The high penetration of X-rays through materials with low atomic numbers makes it difficult to discriminate between these materials using X-ray imaging. The interaction characteristics of neutrons with materials can supplement the limitations of X-ray imaging in material discrimination. Materials and Methods: The radiation image acquisition process for air-cargo security inspection equipment using X-rays and neutrons was simulated using a GEometry ANd Tracking (Geant4) simulation toolkit. Radiation images of phantoms composed of 13 materials were obtained, and the R-value, representing the attenuation ratio of neutrons and gamma rays in a material, was calculated from these images. Results and Discussion: The R-values were calculated from the simulated X-ray and neutron images for each phantom and compared with those obtained in the experiments. The R-values obtained from the experiments were higher than those obtained from the simulations. The difference can be due to the following two causes. The first reason is that there are various facilities or equipment in the experimental environment that scatter neutrons, unlike the simulation. The other is the difference in the neutron signal processing. In the simulation, the neutron signal is the sum of the number of neutrons entering the detector. However, in the experiment, the neutron signal was obtained by superimposing the intensities of the neutron signals. Neutron detectors also detect gamma rays, and the neutron signal cannot be clearly distinguished in the process of separating the two types of radiation. Despite these differences, the two results showed similar trends and the viability of using simulation-based radiation images, particularly in the field of security screening. With further research, the simulation-based radiation images can replace ones from experiments and be used in the related fields. Conclusion: The Korea Atomic Energy Research Institute has developed air-cargo security inspection equipment using neutrons and X-rays. Using this equipment, radiation images and R-values for various materials were obtained. The equipment was reconstructed, and the R-values were obtained for 13 materials using the Geant4 simulation toolkit. The R-values calculated by experiment and simulation show similar trends. Therefore, we confirmed the feasibility of using the simulation-based radiation image.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.