• Title/Summary/Keyword: Image Processing Technology

Search Result 2,406, Processing Time 0.033 seconds

Digital Mirror System with Machine Learning and Microservices (머신 러닝과 Microservice 기반 디지털 미러 시스템)

  • Song, Myeong Ho;Kim, Soo Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.9
    • /
    • pp.267-280
    • /
    • 2020
  • Mirror is a physical reflective surface, typically of glass coated with a metal amalgam, and it is to reflect an image clearly. They are available everywhere anytime and become an essential tool for us to observe our faces and appearances. With the advent of modern software technology, we are motivated to enhance the reflection capability of mirrors with the convenience and intelligence of realtime processing, microservices, and machine learning. In this paper, we present a development of Digital Mirror System that provides the realtime reflection functionality as mirror while providing additional convenience and intelligence including personal information retrieval, public information retrieval, appearance age detection, and emotion detection. Moreover, it provides a multi-model user interface of touch-based, voice-based, and gesture-based. We present our design and discuss how it can be implemented with current technology to deliver the realtime mirror reflection while providing useful information and machine learning intelligence.

Color Change Information Collection Using Python in The Event of Color Temperature Change (색온도 변화 시 파이썬을 이용한 색상 변화 정보의 수집)

  • Jeon, Byungil;Kim, Semin;Lee, Gyujeong;Lee, Jeongwon;Lee, Choong Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.618-620
    • /
    • 2019
  • Smart Farm, which combines agriculture and ICT convergence technology, is at a lower stage than other industries in Korea, but it is also one of the most active research and development fields. Smart Farm aims to improve the efficiency of each step by collecting, processing and analyzing various information of agriculture sector through convergence between agriculture and ICT technology. In this study, we studied the image processing method that can distinguish strawberry which can be harvested at harvest time by color for smart farm composition of strawberry which is a horticultural crop. Strawberry harvesting requires a lot of labor in the process of growing strawberries. In this study, we aim to collect information necessary for labor saving in strawberry harvester. As a precedent study, we plan to implement a form in which the color temperature changes according to the light direction and brightness value through OpenCV color detection using Python. In the future, it is planned to study strawberry color value suitable for harvest by applying compensation value to color temperature change.

  • PDF

Color Transformation of Food Images based on User Sensibility (사용자의 감성을 반영한 음식 이미지 색변환)

  • Choi, Jae-Pil;Choi, Go-Eun;Kang, Hang-Bong
    • Annual Conference of KIPS
    • /
    • 2010.04a
    • /
    • pp.510-513
    • /
    • 2010
  • Color is basically composed of hue, saturation and value. Many objects are made up with color. When people see color, they feel different emotion because of different combination of hue, saturation and value of different colors. Thus, people feel different feeling about the taste of food depending on its color. Thus, by analyzing what color makes people feel tasty about food, we can make food to look more delicious. When people take pictures of food, theyusually do not consider this into account. However if we apply this technology into taking pictures of food, we can make the food look more delicious. This technology can be applied when people want to upload pictures of food in blog, homepage and twitter and so on. In this paper, we analyze the feelings of color of people and then choose the best color combination to present food. After that we change the original image into the new one based on the analysis of color. This way, we can reflect each user's preference.

Image Similarity Analysis in Generative AI

  • Choi Haerin;Lee Hyunseok
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.4
    • /
    • pp.208-214
    • /
    • 2024
  • In Consciousness Explained, Daniel Dennett argued that consciousness is a phenomenon emerging from the complex flow of information in the brain, and to understand it, an objective approach is necessary. While AI is increasingly mimicking human functions, it is difficult to say that AI possesses consciousness similar to humans. However, consciousness is an essential factor for perception, but perception does not necessarily require consciousness. Therefore, this study aims to analyze how similar the way AI, particularly the DALL-E model developed by OpenAI, processes visual information is to the structure of human perception. In the study, new images were generated using the GPT-4 DALL-E model based on five sets of reference images, and the structural similarity between the generated images and the reference images was analyzed using SSIM (Structural Similarity Index Measure). The SSIM scores of the images generated by DALL-E based on the reference images ranged between 0.131 and 0.63. This confirmed that AI learned some degree of the visual patterns from the reference images. However, AI did not generate images that perfectly aligned with human perception, and images that contained complex shapes or fine textures recorded lower SSIM scores. Notably, the AI showed limitations in depicting human portraits, suggesting that AI's perception system is simplified compared to the complexity of human perception structures. This study demonstrated that while the DALL-E model has potential in processing visual information, there remains a clear difference from the complex human perception system. These results suggest that AI still has limitations in mimicking the way humans process visual information, indicating a need for further in-depth research into the independent characteristics of AI perception in the future

Development of Multi-Camera based Mobile Mapping System for HD Map Production (정밀지도 구축을 위한 다중카메라기반 모바일매핑시스템 개발)

  • Hong, Ju Seok;Shin, Jin Soo;Shin, Dae Man
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.587-598
    • /
    • 2021
  • This study aims to develop a multi-camera based MMS (Mobile Mapping System) technology for building a HD (High Definition) map for autonomous driving and for quick update. To replace expensive lidar sensors and reduce long processing times, we intend to develop a low-cost and efficient MMS by applying multiple cameras and real-time data pre-processing. To this end, multi-camera storage technology development, multi-camera time synchronization technology development, and MMS prototype development were performed. We developed a storage module for real-time JPG compression of high-speed images acquired from multiple cameras, and developed an event signal and GNSS (Global Navigation Satellite System) time server-based synchronization method to record the exposure time multiple images taken in real time. And based on the requirements of each sector, MMS was designed and prototypes were produced. Finally, to verify the performance of the manufactured multi-camera-based MMS, data were acquired from an actual 1,000 km road and quantitative evaluation was performed. As a result of the evaluation, the time synchronization performance was less than 1/1000 second, and the position accuracy of the point cloud obtained through SFM (Structure from Motion) image processing was around 5 cm. Through the evaluation results, it was found that the multi-camera based MMS technology developed in this study showed the performance that satisfies the criteria for building a HD map.

Optical Character Recognition for Hindi Language Using a Neural-network Approach

  • Yadav, Divakar;Sanchez-Cuadrado, Sonia;Morato, Jorge
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.117-140
    • /
    • 2013
  • Hindi is the most widely spoken language in India, with more than 300 million speakers. As there is no separation between the characters of texts written in Hindi as there is in English, the Optical Character Recognition (OCR) systems developed for the Hindi language carry a very poor recognition rate. In this paper we propose an OCR for printed Hindi text in Devanagari script, using Artificial Neural Network (ANN), which improves its efficiency. One of the major reasons for the poor recognition rate is error in character segmentation. The presence of touching characters in the scanned documents further complicates the segmentation process, creating a major problem when designing an effective character segmentation technique. Preprocessing, character segmentation, feature extraction, and finally, classification and recognition are the major steps which are followed by a general OCR. The preprocessing tasks considered in the paper are conversion of gray scaled images to binary images, image rectification, and segmentation of the document's textual contents into paragraphs, lines, words, and then at the level of basic symbols. The basic symbols, obtained as the fundamental unit from the segmentation process, are recognized by the neural classifier. In this work, three feature extraction techniques-: histogram of projection based on mean distance, histogram of projection based on pixel value, and vertical zero crossing, have been used to improve the rate of recognition. These feature extraction techniques are powerful enough to extract features of even distorted characters/symbols. For development of the neural classifier, a back-propagation neural network with two hidden layers is used. The classifier is trained and tested for printed Hindi texts. A performance of approximately 90% correct recognition rate is achieved.

Environmental IoT-Enabled Multimodal Mashup Service for Smart Forest Fires Monitoring

  • Elmisery, Ahmed M.;Sertovic, Mirela
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.163-170
    • /
    • 2017
  • Internet of things (IoT) is a new paradigm for collecting, processing and analyzing various contents in order to detect anomalies and to monitor particular patterns in a specific environment. The collected data can be used to discover new patterns and to offer new insights. IoT-enabled data mashup is a new technology to combine various types of information from multiple sources into a single web service. Mashup services create a new horizon for different applications. Environmental monitoring is a serious tool for the state and private organizations, which are located in regions with environmental hazards and seek to gain insights to detect hazards and locate them clearly. These organizations may utilize IoT - enabled data mashup service to merge different types of datasets from different IoT sensor networks in order to leverage their data analytics performance and the accuracy of the predictions. This paper presents an IoT - enabled data mashup service, where the multimedia data is collected from the various IoT platforms, then fed into an environmental cognition service which executes different image processing techniques such as noise removal, segmentation, and feature extraction, in order to detect interesting patterns in hazardous areas. The noise present in the captured images is eliminated with the help of a noise removal and background subtraction processes. Markov based approach was utilized to segment the possible regions of interest. The viable features within each region were extracted using a multiresolution wavelet transform, then fed into a discriminative classifier to extract various patterns. Experimental results have shown an accurate detection performance and adequate processing time for the proposed approach. We also provide a data mashup scenario for an IoT-enabled environmental hazard detection service and experimentation results.

A Fast SAD Algorithm for Area-based Stereo Matching Methods (영역기반 스테레오 영상 정합을 위한 고속 SAD 알고리즘)

  • Lee, Woo-Young;Kim, Cheong Ghil
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.8-12
    • /
    • 2012
  • Area-based stereo matchng algorithms are widely used for image analysis for stereo vision. SAD (Sum of Absolute Difference) algorithm is one of well known area-based stereo matchng algorithms with the characteristics of data intensive computing application. Therefore, it requires very high computation capabilities and its processing speed becomes very slow with software realization. This paper proposes a fast SAD algorithm utilizing SSE (Streaming SIMD Extensions) instructions based on SIMD (Single Instruction Multiple Data) parallism. CPU supporing SSE instructions has 16 XMM registers with 128 bits. For the performance evaluation of the proposed scheme, we compare the processing speed between SAD with/without SSE instructions. The proposed scheme achieves four times performance improvement over the general SAD, which shows the possibility of the software realization of real time SAD algorithm.

Video Stabilization using Phase Correlation and Kalman Filter-Based Motion Prediction (위상상관과 칼만 필터 움직임 예측을 이용한 동영상 안정화)

  • Han, Hag-Yong;Jeong, Hyo-Won;Kang, Bong-Soon;Hur, Kang-In
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.2
    • /
    • pp.106-111
    • /
    • 2009
  • Real-time video stabilization technology is used in correction for the camera vibrations of the hand-held camera by hand or fixed camera by external condition. This paper is about the counterplan to cope with the vibration of the movie generated by the large external cause relatively. we use the movie stabilization parameters with the phase correlation method based the DFT to get the displacements of the current frame to the reference frame. we use the kalman filter for the efficient and stable searching works on the phase correlation map and present the proper conditions for the real-time processing through the experiments. We propose the measure to evaluate the capability of the video stabilizer which is the standard deviation of the brightness of the center block. and compare the capability for the video sequences randomly shifted and the jittered video sequences obtained from camera.

  • PDF

An Intelligent Chatbot Utilizing BERT Model and Knowledge Graph (BERT 모델과 지식 그래프를 활용한 지능형 챗봇)

  • Yoo, SoYeop;Jeong, OkRan
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.3
    • /
    • pp.87-98
    • /
    • 2019
  • As artificial intelligence is actively studied, it is being applied to various fields such as image, video and natural language processing. The natural language processing, in particular, is being studied to enable computers to understand the languages spoken and spoken by people and is considered one of the most important areas in artificial intelligence technology. In natural language processing, it is a complex, but important to make computers learn to understand a person's common sense and generate results based on the person's common sense. Knowledge graphs, which are linked using the relationship of words, have the advantage of being able to learn common sense easily from computers. However, the existing knowledge graphs are organized only by focusing on specific languages and fields and have limitations that cannot respond to neologisms. In this paper, we propose an intelligent chatbotsystem that collects and analyzed data in real time to build an automatically scalable knowledge graph and utilizes it as the base data. In particular, the fine-tuned BERT-based for relation extraction is to be applied to auto-growing graph to improve performance. And, we have developed a chatbot that can learn human common sense using auto-growing knowledge graph, it verifies the availability and performance of the knowledge graph.