• Title/Summary/Keyword: Image Processing Board

Search Result 226, Processing Time 0.028 seconds

Development of Automated Display Image Characteristic Inspection System of Braun Tube(CRT) (브라운관의 화상계측 자동화 시스템 개발)

  • 유우식;장성호;이도경
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.35
    • /
    • pp.1-8
    • /
    • 1995
  • Automatic inspection system software for display image characteristic of CRT is developed. There are two major contributions of this software development. One is that the data from measuring equipments which was usually collected manually is automatically collected through RS-232C port and is saved in computer, then, trend analysis graph and final reports are generated. The other is that evauation of characteristic of electron gun was automatically processed by CCD camera and image processing technique. The system is developed under MS-Windows environment utilizing Borland C++4.0 Compiler and DT 3852-8 image processor board. This system can save the time and man power to measure and to anayze the image characteristics relative to current method.

  • PDF

FPGA Design of SVM Classifier for Real Time Image Processing (실시간 영상처리를 위한 SVM 분류기의 FPGA 구현)

  • Na, Won-Seob;Han, Sung-Woo;Jeong, Yong-Jin
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.209-219
    • /
    • 2016
  • SVM is a machine learning method used for image processing. It is well known for its high classification performance. We have to perform multiple MAC operations in order to use SVM for image classification. However, if the resolution of the target image or the number of classification cases increases, the execution time of SVM also increases, which makes it difficult to be performed in real-time applications. In this paper, we propose an hardware architecture which enables real-time applications using SVM classification. We used parallel architecture to simultaneously calculate MAC operations, and also designed the system for several feature extractors for compatibility. RBF kernel was used for hardware implemenation, and the exponent calculation formular included in the kernel was modified to enable fixed point modelling. Experimental results for the system, when implemented in Xilinx ZC-706 evaluation board, show that it can process 60.46 fps for $1360{\times}800$ resolution at 100MHz clock frequency.

Ball Grid Array Solder Void Inspection Using Mask R-CNN

  • Kim, Seung Cheol;Jeon, Ho Jeong;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.126-130
    • /
    • 2021
  • The ball grid array is one of the packaging methods that used in high density printed circuit board. Solder void defects caused by voids in the solder ball during the BGA process do not directly affect the reliability of the product, but it may accelerate the aging of the device on the PCB layer or interface surface depending on its size or location. Void inspection is important because it is related in yields with products. The most important process in the optical inspection of solder void is the segmentation process of solder and void. However, there are several segmentation algorithms for the vision inspection, it is impossible to inspect all of images ideally. When X-Ray images with poor contrast and high level of noise become difficult to perform image processing for vision inspection in terms of software programming. This paper suggests the solution to deal with the suggested problem by means of using Mask R-CNN instead of digital image processing algorithm. Mask R-CNN model can be trained with images pre-processed to increase contrast or alleviate noises. With this process, it provides more efficient system about complex object segmentation than conventional system.

The Evaluation of CR and DDR chest image using ROC analysis (ROC평가 방법을 이용한 CR과 DDR 흉부 영상의 비교)

  • Park, Yeon-Ok;Jung, Eun-Kyung;Park, Yeon-Jung;Nam, So-Ra;Jung, Ji-Young;Kim, Hee-Joung
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • ROC(Receiver Operating Characteristic)curve is the method that estimate detected insignificant signal from the human's sense of sight, it has been raised excellent results. In this study, we evaluate image quality and equipment character by obtaining a chest image from CR(Computed Radiography) and DDR(Direct Digital radiography) using the human chest phantom, The parameter of exposure for obtaining chest image was 120 kVp/3.2 mAs and the SID(Source to Image Distance) was 180cm. The images were obtained by CR(AGFA MD 4.0 General plate, JAPAN) and DDR(HOLOGIC nDirect Ray, USA). Using some pieces of Aluminum and stone for expressing regions, then attached them on the heart, lung and thoracic vertebrae of the phantom. 29 persons hold radiology degrees were participated in ROC analysis. As a result of the ROC analysis, TPF(true positive fraction) and FPF(false positive fraction) of DDR and CR are 0.552 and 0.474 and 0.629 and 0.405, respectively. By using the results, the ROC curve of CR has higher image quality than DDR. According to the theory, DDR has the higher image quality than CR in chest X-ray image. But, CR has the higher image quality than DDR. quality of DDR inserted the enhance board. The results confirmed that image post-processing is important element decipherment of clinical.

  • PDF

Real Time Face Detection and Recognition based on Embedded System (임베디드 시스템 기반 실시간 얼굴 검출 및 인식)

  • Lee, A-Reum;Seo, Yong-Ho;Yang, Tae-Kyu
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.11 no.1
    • /
    • pp.23-28
    • /
    • 2012
  • In this paper, we proposed and developed a fast and efficient real time face detection and recognition which can be run on embedded system instead of high performance desktop. In the face detection process, we detect a face by finding eye part which is one of the most salient facial features after applying various image processing methods, then in the face recognition, we finally recognize the face by comparing the current face with the prepared face database using a template matching algorithm. Also we optimized the algorithm in our system to be successfully used in the embedded system, and performed the face detection and recognition experiments on the embedded board to verify the performance. The developed method can be applied to automatic door, mobile computing environment and various robot.

  • PDF

Real Time Engine Quality Inspection System by Image Processing (영상처리기법에 의한 실시간 엔진 품질검사시스템)

  • Jung, Won;Shin, Hyun-Myung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.3
    • /
    • pp.397-406
    • /
    • 1998
  • The purpose of this research is to develop an integrated quality inspection system using machine vision technology in the automotive engine assembly process. The system makes it possible for the inspected data to be entered directly from the machine vision system into the developed system without the need for intermediate operations. Such direct entry enables prompt corrective actions against process problems. An IVP-150 machine vision board is installed an the PC for image processing, and a template matching technology is implemented to precisely verify quality factors. The developed system is successfully installed in a manufacturing process, and it showed robustness to the problems of noise, distortion, and orientation.

  • PDF

Improvement on the Image Processing for an Autonomous Mobile Robot with an Intelligent Control System

  • Kubik, Tomasz;Loukianov, Andrey A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.36.4-36
    • /
    • 2001
  • A robust and reliable path recognition system is one necessary component for the autonomous navigation of a mobile robot to help determining its current position in its navigation map. This paper describes a computer visual path-recognition system using on-board video camera as vision-based driving assistance for an autonomous navigation mobile robot. The common problem for a visual system is that its reliability was often influenced by different lighting conditions. Here, two different image processing methods for the path detection were developed to reduce the effect of the luminance: one is based on the RGB color model and features of the path, another is based on the HSV color model in the absence of luminance.

  • PDF

Position Recognition and Indoor Autonomous Flight of a Small Quadcopter Using Distributed Image Matching (분산영상 매칭을 이용한 소형 쿼드콥터의 실내 비행 위치인식과 자율비행)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.255-261
    • /
    • 2020
  • We consider the problem of autonomously flying a quadcopter in indoor environments. Navigation in indoor settings poses two major issues. First, real time recognition of the marker captured by the camera. Second, The combination of the distributed images is used to determine the position and orientation of the quadcopter in an indoor environment. We autonomously fly a miniature RC quadcopter in small known environments using an on-board camera as the only sensor. We use an algorithm that combines data-driven image classification with image-combine techniques on the images captured by the camera to achieve real 3D localization and navigation.

Three-dimensional Geometrical Scanning System Using Two Line Lasers (2-라인 레이저를 사용한 3차원 형상 복원기술 개발)

  • Heo, Sang-Hu;Lee, Chung Ghiu
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.5
    • /
    • pp.165-173
    • /
    • 2016
  • In this paper, we propose a three-dimensional (3D) scanning system based on two line lasers. This system uses two line lasers with different wavelengths as light sources. 532-nm and 630-nm line lasers can compensate for missing scan data generated by geometrical occlusion. It also can classify two laser planes by using the red and green channels. For automatic registration of scanning data, we control a stepping motor and divide the motor's rotational degree of freedom into micro-steps. To this end, we design a control printed circuit board for the laser and stepping motor, and use an image processing board. To compute a 3D point cloud, we obtain 200 and 400 images with laser lines and segment lines on the images at different degrees of rotation. The segmented lines are thinned for one-to-one matching of an image pixel with a 3D point.

Development of the Railway Abrasion Measurement System using Camera Model and Perspective Transformation (카메라 모델과 투시 변환에 의한 레일 마모도 측정 시스템 개발)

  • Ahn, Sung-Hyuk;Kang, Dong-Eun;Moon, Hyoung-Deuk;Park, So-Yeon;Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1069-1077
    • /
    • 2008
  • The railway abrasion measurement system have to satisfy two conditions to increase the measurement accuracy as follows. The laser region which is projected on the rail have to be extracted without the geometrical distortion. The mapping of the acquired laser region data on the rail profile have to be processed exactly. But, the conventional railway abrasion measurement system is deeply effected by the foreign substance( dust, rainwater, and so on ) on the railway or the sensitive response characteristic of the laser to the external measurement circumstance, and then the measurement errors arise from above factors. When the laser region is projected on the rail extracts from the acquired image, the interference of the light with the same frequency as the laser system occurs the serious problems. In the process of the mapping between the railway profile and the extracted laser region, the measurement accuracy is very highly effected by the geometrical distortion and the abnormal variation. In this Paper, we propose the novel method to increase the accuracy of the railway abrasion measurement dramatically. we designed and manufactured the high precision and fast image processing board with DSP Core and FPGA to measure the railway abrasion. The image processing board has the capability that the image of 1024X1280 from camera can be processed with the speed of 480 frame/sec. And, we apply the image processing algorithm base on the wavelet to extract the laser region is projected on the rail exactly. Finally, we developed high precision railway abrasion measurement system with the error range less than +/-0.5mm by which 2D image data is covered 3D data and mapped on the rail profile using the camera model and the perspective transform.

  • PDF