• Title/Summary/Keyword: Image Pattern Recognition

Search Result 615, Processing Time 0.027 seconds

Door Traversing for A Mobile Robot in Complex Environment (복잡한 환경에서 자율이동 로봇의 문 통과방법)

  • Kim Young-Joong;Lim Myo-Teak;Seo Min-Wook
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.7
    • /
    • pp.447-452
    • /
    • 2005
  • This paper presents a method that a mobile robot finds location of doors in complex environments and safely traverses the door PCA(Principal Component Analysis) algorithm using the vision information is used for a robot to find the location of door, PCA is a useful statistical technique that has found application in fields such as face recognition and image compression, and is a common technique for finding pattern in data of high dimension. Fuzzy controller using a sonar data is used for a robot to avoid obstacles and traverse the doors.

On-line Data Analysis for Marketing Service including Golf Image Contents (골프공 영상콘텐츠를 포함한 마케팅서비스를 위한 온라인 자료분석에 관한 연구)

  • Lee, Hyun-chang;Jin, Chan-Yong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.379-381
    • /
    • 2016
  • Among the various sports, recognition of golf sport is changing the privileged classes sport into a popular sport. In this kind of sport area, there are many loyal customers of golf sport relatively compared to the other marketing products or sports. Therefore, in this paper, we have analyzed the online buying pattern of customers through the popularization of golf such as golf ball or accessories and want to promote activation marketing in the online environment. For these, we suggest the way to promote marketing activation by analyzing online data.

  • PDF

Heterogeneous Parallel Architecture for Face Detection Enhancement

  • Albssami, Aishah;Sharaf, Sanaa
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.193-198
    • /
    • 2022
  • Face Detection is one of the most important aspects of image processing, it considers a time-consuming problem in real-time applications such as surveillance systems, face recognition systems, attendance system and many. At present, commodity hardware is getting more and more heterogeneity in terms of architectures such as GPU and MIC co-processors. Utilizing those co-processors along with the existing traditional CPUs gives the algorithm a better chance to make use of both architectures to achieve faster implementations. This paper presents a hybrid implementation of the face detection based on the local binary pattern (LBP) algorithm that is deployed on both traditional CPU and MIC co-processor to enhance the speed of the LBP algorithm. The experimental results show that the proposed implementation achieved improvement in speed by 3X when compared to a single architecture individually.

Video Road Vehicle Detection and Tracking based on OpenCV

  • Hou, Wei;Wu, Zhenzhen;Jung, Hoekyung
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.226-233
    • /
    • 2022
  • Video surveillance is widely used in security surveillance, military navigation, intelligent transportation, etc. Its main research fields are pattern recognition, computer vision and artificial intelligence. This article uses OpenCV to detect and track vehicles, and monitors by establishing an adaptive model on a stationary background. Compared with traditional vehicle detection, it not only has the advantages of low price, convenient installation and maintenance, and wide monitoring range, but also can be used on the road. The intelligent analysis and processing of the scene image using CAMSHIFT tracking algorithm can collect all kinds of traffic flow parameters (including the number of vehicles in a period of time) and the specific position of vehicles at the same time, so as to solve the vehicle offset. It is reliable in operation and has high practical value.

Improving View-consistency on 4D Light Field Superpixel Segmentation (라이트필드 영상 슈퍼픽셀 분할의 시점간 일관성 개선)

  • Yim, Jonghoon;Duong, Vinh Van;Huu, Thuc Ngyuen;Jeon, Byeungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.97-100
    • /
    • 2021
  • Light field (LF) superpixel segmentation aims to group the similar pixels not only in the single image but also in the other views to improve the computational efficiency of further applications like object detection and pattern recognition. Among the state-of-the-art methods, there is an approach to segment the LF images while enforcing the view consistency. However, it leaves too much noise and inaccuracy in the shape of superpixels. In this paper, we modify the process of the clustering step. Experimental results demonstrate that our proposed method outperforms the existing method in terms of view-consistency.

  • PDF

Recognition of Partially Occluded Binary Objects using Elastic Deformation Energy Measure (탄성변형에너지 측도를 이용한 부분적으로 가려진 이진 객체의 인식)

  • Moon, Young-In;Koo, Ja-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.63-70
    • /
    • 2014
  • Process of recognizing objects in binary images consists of image segmentation and pattern matching. If binary objects in the image are assumed to be separated, global features such as area, length of perimeter, or the ratio of the two can be used to recognize the objects in the image. However, if such an assumption is not valid, the global features can not be used but local features such as points or line segments should be used to recognize the objects. In this paper points with large curvature along the perimeter are chosen to be the feature points, and pairs of points selected from them are used as local features. Similarity of two local features are defined using elastic deformation energy for making the lengths and angles between gradient vectors at the end points same. Neighbour support value is defined and used for robust recognition of partially occluded binary objects. An experiment on Kimia-25 data showed that the proposed algorithm runs 4.5 times faster than the maximum clique algorithm with same recognition rate.

The Study on Dynamic Images Processing for Finger Languages (지화 인식을 위한 동영상 처리에 관한 연구)

  • Kang, Min-Ji;Choi, Eun-Sook;Sohn, Young-Sun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.184-189
    • /
    • 2004
  • In this paper, we realized a system that receives the dynamic images of finger languages, which is the method of intention transmission of the hearing disabled person, using the white and black CCD camera, and that recognizes the images and converts them to the editable text document. We use the afterimage to draw a sharp line between indistinct images and clear images from a series of inputted images, and get the character alphabet from the away of continuous images and output the accomplished character to the word editor by applying the automata theory. After the system removes the varied wrist part from the data of clean image, it gets the controid point of hand by the maximum circular movement method and recognizes the hand that is necessary to analyze the finger languages by applying the circular pattern vector algorithm. The system abstracts the characteristic vectors of the hand using the distance spectrum from the center of the hand and it compares the characteristic vector of inputted pattern from the standard pattern by applying the fuzzy inference and recognizes the movement of finger languages.

A Method for Improving Vein Recognition Performance by Illumination Normalization (조명 정규화를 통한 정맥인식 성능 향상 기법)

  • Lee, Eui Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.423-430
    • /
    • 2013
  • Recently, the personal identification technologies using vein pattern of back of the hand, palm, and finger have been developed actively because it has the advantage that the vein blood vessel in the body is impossible to damage, make a replication and forge. However, it is difficult to extract clearly the vein region from captured vein images through common image prcessing based region segmentation method, because of the light scattering and non-uniform internal tissue by skin layer and inside layer skeleton, etc. Especially, it takes a long time for processing time and makes a discontinuity of blood vessel just in a image because it has non-uniform illumination due to use a locally different adaptive threshold for the binarization of acquired finger-vein image. To solve this problem, we propose illumination normalization based fast method for extracting the finger-vein region. The proposed method has advantages compared to the previous methods as follows. Firstly, for remove a non-uniform illumination of the captured vein image, we obtain a illumination component of the captured vein image by using a low-pass filter. Secondly, by extracting the finger-vein path using one time binarization of a single threshold selection, we were able to reduce the processing time. Through experimental results, we confirmed that the accuracy of extracting the finger-vein region was increased and the processing time was shortened than prior methods.

Surface Crack Evaluation Method in Concrete Structures (콘크리트 구조물의 표면 균열 평가 기법)

  • Lee, Bang-Yeon;Yi, Seong-Tae;Kim, Jin-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.173-182
    • /
    • 2007
  • Cracks in concrete structures should be measured to periodically assess potential problems in durability and serviceability. Conventional crack measurement systems depend on visual inspections and manual measurements of the crack features such as width, length, and direction using microscope and crack gage. However, conventional methods take long time as well as manpower, and lack quantitative objectivity resulted by inspectors. In this study, an evaluation technique for concrete surface cracks is developed using image processing and artificial neural network. Developed technique consists of three major parts: (1) crack detection (2) crack analysis and (3) pattern recognition. To examine validity of the technique developed in this study, crack analyzing tests were performed on the images obtained from various types of concrete surface cracks. The test results revealed that the system is highly effective in automatically analyzing concrete surface cracks in terms of features and patterns of cracks.

Evaluation of Marker Images based on Analysis of Feature Points for Effective Augmented Reality (효과적인 증강현실 구현을 위한 특징점 분석 기반의 마커영상 평가 방법)

  • Lee, Jin-Young;Kim, Jongho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.49-55
    • /
    • 2019
  • This paper presents a marker image evaluation method based on analysis of object distribution in images and classification of images with repetitive patterns for effective marker-based augmented reality (AR) system development. We measure the variance of feature point coordinates to distinguish marker images that are vulnerable to occlusion, since object distribution affects object tracking performance according to partial occlusion in the images. Moreover, we propose a method to classify images suitable for object recognition and tracking based on the fact that the distributions of descriptor vectors among general images and repetitive-pattern images are significantly different. Comprehensive experiments for marker images confirm that the proposed marker image evaluation method distinguishes images vulnerable to occlusion and repetitive-pattern images very well. Furthermore, we suggest that scale-invariant feature transform (SIFT) is superior to speeded up robust features (SURF) in terms of object tracking in marker images. The proposed method provides users with suitability information for various images, and it helps AR systems to be realized more effectively.