• 제목/요약/키워드: Image Pattern Recognition

검색결과 615건 처리시간 0.036초

뉴럴네트워크를 이용한 카메라 보정기법 개발 (Development of Camera Calibration Technique Using Neural-Network)

  • 장영희
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.225-229
    • /
    • 1997
  • This paper describes the camera calibration based-neural network with a camera modeling that accounts for major sources of camera distortion, namely, radial, decentering, and thin prism distortion. Radial distortion causes and inward or outward displacement of a given image point from its ideal location. Actual optical systems are subject to various degrees of decentering, that is, the optical centers of lens elements are not strictly collinear. Thin prism distortion arises from imperfection in lens design and manufacturing as well as camera assembly. It is our purpose to develop the vision system for the pattern recognition and the automatic test of parts and to apply the line of manufacturing. The performance of proposed camera calibration is illustrated by simulation and experiment.

  • PDF

Clustering Algorithm by Grid-based Sampling

  • Park, Hee-Chang;Ryu, Jee-Hyun;Lee, Sung-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권3호
    • /
    • pp.535-543
    • /
    • 2003
  • Cluster analysis has been widely used in many applications, such as pattern analysis or recognition, data analysis, image processing, market research on on-line or off-line and so on. Clustering can identify dense and sparse regions among data attributes or object attributes. But it requires many hours to get clusters that we want, because clustering is more primitive, explorative and we make many data an object of cluster analysis. In this paper we propose a new method of clustering using sample based on grid. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

Clustering Algorithm by Grid-based Sampling

  • 박희창;유지현
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 춘계학술대회
    • /
    • pp.97-108
    • /
    • 2003
  • Cluster analysis has been widely used in many applications, such that pattern analysis or recognition, data analysis, image processing, market research on on-line or off-line and so on. Clustering can identify dense and sparse regions among data attributes or object attributes. But it requires many hours to get clusters that we want, because of clustering is more primitive, explorative and we make many data an object of cluster analysis. In this paper we propose a new method of clustering using sample based on grid. It is more fast than any traditional clustering method and maintains its accuracy. It reduces running time by using grid-based sample. And other clustering applications can be more effective by using this methods with its original methods.

  • PDF

Clustering Algorithm using a Center Of Gravity for Grid-based Sample

  • 박희창;유지현
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 춘계학술대회
    • /
    • pp.77-88
    • /
    • 2003
  • Cluster analysis has been widely used in many applications, such that data analysis, pattern recognition, image processing, etc. But clustering requires many hours to get clusters that we want, because it is more primitive, explorative and we make many data an object of cluster analysis. In this paper we propose a new clustering method, 'Clustering algorithm using a center of gravity for grid-based sample'. It is more fast than any traditional clustering method and maintains accuracy. It reduces running time by using grid-based sample and keeps accuracy by using representative point, a center of gravity.

  • PDF

가변적 템플릿 메모리를 갖는 디지털 프로그래머블 CNN 구현에 관한 연구 (A study on implementation digital programmable CNN with variable template memory)

  • 윤유권;문성룡
    • 전자공학회논문지C
    • /
    • 제34C권10호
    • /
    • pp.59-66
    • /
    • 1997
  • Neural networks has widely been be used for several practical applications such as speech, image processing, and pattern recognition. Thus, a approach to the voltage-controlled current source in areas of neural networks, the key features of CNN in locally connected only to its netighbors. Because the architecture of the interconnection elements between cells in very simple and space invariant, CNNs are suitable for VLSI implementation. In this paper, processing element of digital programmable CNN with variable template memory was implemented using CMOS circuit. CNN PE circuit was designe dto control gain for obtaining the optimal solutions in the CNN output. Performance of operation for 4*4 CNN circuit applied for fixed template and variable template analyzed with the result of simulation using HSPICE tool. As a result of simulations, the proposed variable template method verified to improve performance of operation in comparison with the fixed template method.

  • PDF

NETLA를 이용한 이진 신경회로망의 최적합성 (Optimal Synthesis of Binary Neural Network using NETLA)

  • 정종원;성상규;지석준;최우진;이준탁
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.273-277
    • /
    • 2002
  • This paper describes an optimal synthesis method of binary neural network(BNN) for an approximation problem of a circular region and synthetic image having four class using a newly proposed learning algorithm. Our object is to minimize the number of connections and neurons in hidden layer by using a Newly Expanded and Truncated Learning Algorithm(NETLA) based on the multilayer BNN. The synthesis method in the NETLA is based on the extension principle of Expanded and Truncated Learning (ETL) learning algorithm using the multilayer perceptron and is based on Expanded Sum of Product (ESP) as one of the boolean expression techniques. The number of the required neurons in hidden layer can be reduced and fasted for learning pattern recognition.. The superiority of this NETLA to other algorithms was proved by simulation.

  • PDF

일반화된 Hough 변환을 위한 특수 목적 VLSI 시스템 설계에 관한 연구 (Specialized VLSI System Design for the Generalized Hough Transform)

  • 채옥삼;이정헌
    • 전자공학회논문지B
    • /
    • 제32B권3호
    • /
    • pp.66-76
    • /
    • 1995
  • In this research, a mesh connected VLSI structure is proposed for the real time computation of the generalized Hough transform(GHT). The purpose of the research is to design a generalized Hough transformer that can be realized as a single chip processor. The GHT has been modified to yield a highly parallel structure consisting of simple processing elements(PEs) and communication networks. In the proposed structure, the GHT can be computed by first assigning an image pixel to a PE and performing shift and add operations. The result of the CAD circuit simulation shows that it can be computed in the time proportional to the number of pixels in the pattern. In addition to the Hough transformer, the peak detector has been designed to reduce 1)the number of the I/O operations between the transformer and the host computer and 2) the host computer's burden for peak detection by transmitting only the local peaks detected from the transformed accumulator. It is expected that the proposed single chip Hough transformer with peak detector makes a fast and inexpensive edge based object recognition systems possible for many industrial and military applications.

  • PDF

K-means Clustering using a Center Of Gravity for grid-based sample

  • 박희창;이선명
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2004년도 춘계학술대회
    • /
    • pp.51-60
    • /
    • 2004
  • K-means clustering is an iterative algorithm in which items are moved among sets of clusters until the desired set is reached. K-means clustering has been widely used in many applications, such as market research, pattern analysis or recognition, image processing, etc. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters that we want, because it is more primitive, explorative. In this paper we propose a new method of k-means clustering using a center of gravity for grid-based sample. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

CNN을 이용한 능동 소나 표적/비표적 분류 (Active Sonar Target/Non-target Classification using Convolutional Neural Networks)

  • 김동욱;석종원;배건성
    • 한국멀티미디어학회논문지
    • /
    • 제21권9호
    • /
    • pp.1062-1067
    • /
    • 2018
  • Conventional active sonar technology has relied heavily on the hearing of sonar operator, but recently, many techniques for automatic detection and classification have been studied. In this paper, we extract the image data from the spectrogram of the active sonar signal and classify the extracted data using CNN(convolutional neural networks), which has recently presented excellent performance improvement in the field of pattern recognition. First, we divided entire data set into eight classes depending on the ratio containing the target. Then, experiments were conducted to classify the eight classes data using proposed CNN structure, and the results were analyzed.

광패턴 인식을 위한 pSDF와 이진 결합 변환 상관기의 구현

  • 정창규;김남수;조동래;박한규
    • 한국통신학회논문지
    • /
    • 제15권8호
    • /
    • pp.678-688
    • /
    • 1990
  • 본 논문에서는 pSDF(projection synthetic discriminant function) 공간불변 필터 개념을 적용하여 기준 이미지를 구현하고, 공간 평면 상관기인 이진 결합 변환 상관기를 이용하여 동일 클래스 인식을 수행하였다. 컴퓨터 시뮬레이션 결과, 이진 결합 변환 상관기가 기존의 결합 변환 상관기보다 상관 첨두치 세기, 상관 첨두치 세기대 부로브비, 신호대 잡음비, 상관폭 부분에서 뛰어난 상관 특성을 보였다. 이진 결합 변환상관기를 이용한 광 패턴 인식 실험을 한 결과, 동일 클래스 인식인 경우 4.1~9.6% 오차 범위내에서 상관 첨두치 세기가 일정하게 나타났다.

  • PDF