• Title/Summary/Keyword: Image Pattern Recognition

Search Result 615, Processing Time 0.025 seconds

Iris recognition robust to noises

  • Kim, Jaemin;Jungwoo Won;Seongwon Cho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.42-45
    • /
    • 2003
  • This paper describes a new iris recognition method using shift-invariant subbands. First an iris image is preprocessed to compensate the variation of the iris image. Then, the preprocessed iris image is decomposed into multiple subbands using a shift invariant wavelet transform. The best subband among them, which have rich information for various iris pattern and robust to noises, is selected for iris recognition. The quantized pixels of the best subband yield the feature representation. Experimentally, we show that the proposed method produced superb performance in iris recognition.

  • PDF

A study for object recognition based on location information (위치 정보 기반 객체인지에 대한 연구)

  • Kim, Kwan-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1988-1992
    • /
    • 2013
  • In this paper, we propose a method of object recognition to real image object which enter into an area. We needs this method for an application module to detect and trace the moving pattern of some objects entered into an specific area. A scheme to the object recognition is adopted to some applied modules that it is moved from only real image information recognition to real coordination recognition, the mapping between the GPS coordination and real image information provides object coordination.

Recognition of the Printed English Sentence by Using Japanese Puzzle

  • Sohn, Young-Sun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.225-230
    • /
    • 2008
  • In this paper we embody a system that recognizes printed alphabet, numeral figures and symbols written on the keyboard for the recognition of English sentences. The image of the printed sentences is inputted and binarized, and the characters are separated by using histogram method that is the same as the existing character recognition method. During the abstraction of the individual characters, we classify one group that has not numerical information by the projection of the vertical center of the character. In case of another group that has the longer width than the height, we assort them by normalizing the width. The other group normalizes the height of the images. With the reverse application of the basic principle of the Japanese Puzzle to a normalized character image, the proposed system classifies and recognizes the printed numeral figures, symbols and characters, consequently we meet with good result.

Secure Fingerprint Identification System based on Optical Encryption (광 암호화를 이용한 안전한 지문 인식 시스템)

  • 한종욱;김춘수;박광호;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2415-2423
    • /
    • 1999
  • We propose a new optical method which conceals the data of authorized persons by encryption before they are stored or compared in the pattern recognition system for security systems. This proposed security system is made up of two subsystems : a proposed optical encryption system and a pattern recognition system based on the JTC which has been shown to perform well. In this system, each image of authorized persons as a reference image is stored in memory units through the proposed encryption system. And if a fingerprint image is placed in the input plane of this security system for access to a restricted area, the image is encoded by the encryption system then compared with the encrypted reference image. Therefore because the captured input image and the reference data are encrypted, it is difficult to decrypt the image if one does not know the encryption key bit stream. The basic idea is that the input image is encrypted by performing optical XOR operations with the key bit stream that is generated by digital encryption algorithms. The optical XOR operations between the key bit stream and the input image are performed by the polarization encoding method using the polarization characteristics of LCDs. The results of XOR operations which are detected by a CCD camera should be used as an input to the JTC for comparison with a data base. We have verified the idea proposed here with computer simulations and the simulation results were also shown.

  • PDF

A Study on the Fractal Attractor Creation and Analysis of the Printed Korean Characters

  • Shon, Young-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.1
    • /
    • pp.53-57
    • /
    • 2003
  • Chaos theory is a study researching the irregular, unpredictable behavior of deterministic and non-linear dynamical system. The interpretation using Chaos makes us evaluate characteristic existing in status space of system by tine series, so that the extraction of Chaos characteristic understanding and those characteristics enables us to do high precision interpretation. Therefore, This paper propose the new method which is adopted in extracting character features and recognizing characters using the Chaos Theory. Firstly, it gets features of mesh feature, projection feature and cross distance feature from input character images. And their feature is converted into time series data. Then using the modified Henon system suggested in this paper, it gets last features of character image after calculating Box-counting dimension, Natural Measure, information bit and information dimension which are meant fractal dimension. Finally, character recognition is performed by statistically finding out the each information bit showing the minimum difference against the normalized pattern database. An experimental result shows 99% character classification rates for 2,350 Korean characters (Hangul) using proposed method in this paper.

Enhanced Fuzzy Single Layer Perceptron

  • Chae, Gyoo-Yong;Eom, Sang-Hee;Kim, Kwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.1
    • /
    • pp.36-39
    • /
    • 2004
  • In this paper, a method of improving the learning speed and convergence rate is proposed to exploit the advantages of artificial neural networks and neuro-fuzzy systems. This method is applied to the XOR problem, n bit parity problem, which is used as the benchmark in the field of pattern recognition. The method is also applied to the recognition of digital image for practical image application. As a result of experiment, it does not always guarantee convergence. However, the network showed considerable improvement in learning time and has a high convergence rate. The proposed network can be extended to any number of layers. When we consider only the case of the single layer, the networks had the capability of high speed during the learning process and rapid processing on huge images.

Research on Damage Identification of Buried Pipeline Based on Fiber Optic Vibration Signal

  • Weihong Lin;Wei Peng;Yong Kong;Zimin Shen;Yuzhou Du;Leihong Zhang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.511-517
    • /
    • 2023
  • Pipelines play an important role in urban water supply and drainage, oil and gas transmission, etc. This paper presents a technique for pattern recognition of fiber optic vibration signals collected by a distributed vibration sensing (DVS) system using a deep learning residual network (ResNet). The optical fiber is laid on the pipeline, and the signal is collected by the DVS system and converted into a 64 × 64 single-channel grayscale image. The grayscale image is input into the ResNet to extract features, and finally the K-nearest-neighbors (KNN) algorithm is used to achieve the classification and recognition of pipeline damage.

Performance Improvement of a Deep Learning-based Object Recognition using Imitated Red-green Color Blindness of Camouflaged Soldier Images (적록색맹 모사 영상 데이터를 이용한 딥러닝 기반의 위장군인 객체 인식 성능 향상)

  • Choi, Keun Ha
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.139-146
    • /
    • 2020
  • The camouflage pattern was difficult to distinguish from the surrounding background, so it was difficult to classify the object and the background image when the color image is used as the training data of deep-learning. In this paper, we proposed a red-green color blindness image transformation method using the principle that people of red-green blindness distinguish green color better than ordinary people. Experimental results show that the camouflage soldier's recognition performance improved by proposed a deep learning model of the ensemble technique using the imitated red-green-blind image data and the original color image data.

Realization for Nonlinear Movement Controlling System with Image Pattern Recognition (영상인식에 의한 움직임 제어 시스템 구현)

  • Ryu Jae-Hoon;Jung Tae-Lim;Ryu Kwang-Ryol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.213-216
    • /
    • 2006
  • A realization for control system on image recognition is presented in this paper. System consist of control system and image processing system. Control system can control for spring by micro controler. Image processing system using vertical matching algorithm. The experiment results are that response time is about 2sec and the voltage of wind pressure is average 75mVolt.

  • PDF