• 제목/요약/키워드: Image Noise Classification

검색결과 148건 처리시간 0.026초

에지 적응 1-비트 DPCM 영상부호화 (An Edge Adaptive 1-Bit DPCM Image Coding)

  • 심영석;남상욱
    • 대한전자공학회논문지
    • /
    • 제25권7호
    • /
    • pp.819-825
    • /
    • 1988
  • An 1-bit DPCM image coding method is presented. Our method is specially designed to reduce the slope overload which seems to be the major performance degradation factor in 1-bit DPCM. In the present algorithm, based on the classification of neighborhoods by its flatness, slope strength and direction, predictor and quantizer operate adaptively through switching action. Compared with some other methods by computer simulation, proposed method shows improved performance in image quality as well as in signal to noise ratio. This gain mainly comes from the reduced slope overload and seems large to compensate the increased complexity in prediction. As a post processing, Lee filter is used to reduce the granular noise subjectively annoying in flat region.

  • PDF

산불연료지도 제작을 위한 객체기반 분류 방법 연구 (A Study on the Object-based Classification Method for Wildfire Fuel Type Map)

  • 윤여상;김윤수;김용승
    • 항공우주기술
    • /
    • 제6권1호
    • /
    • pp.213-221
    • /
    • 2007
  • 본 연구에서는 2002년 4월에 획득된 Hyperion 초분광 원격탐사 자료를 이용하여 산불연료지도 제작을 위한 객체기반 분류 기법을 제시하였으며, 또한 객체기반 분석결과와 화소기반 분석결과를 비교해 보았다. 이를 위해 우선적으로 Hyperion 위성영상에 있는 잡음 화소 보정과 잡음 밴드를 제거하였으며, 또한 정확한 자료 처리를 위해 대기보정을 수행하였다. 산불 연료 지도 제작을 위한 방법은 분광혼합분석(SMA) 처리 결과를 재구성하여 얻었다. 객체 기반 접근 방법은 세그먼트 기반의 endmember 선택방법을 활용하였으며, 화소기반 분석은 표준 분광혼합분석기법을 적용하였다. 검증 및 비교를 위해서는 고해상도 칼라 항공정사영상이 활용되었다.

  • PDF

Nearest-Neighbors Based Weighted Method for the BOVW Applied to Image Classification

  • Xu, Mengxi;Sun, Quansen;Lu, Yingshu;Shen, Chenming
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1877-1885
    • /
    • 2015
  • This paper presents a new Nearest-Neighbors based weighted representation for images and weighted K-Nearest-Neighbors (WKNN) classifier to improve the precision of image classification using the Bag of Visual Words (BOVW) based models. Scale-invariant feature transform (SIFT) features are firstly extracted from images. Then, the K-means++ algorithm is adopted in place of the conventional K-means algorithm to generate a more effective visual dictionary. Furthermore, the histogram of visual words becomes more expressive by utilizing the proposed weighted vector quantization (WVQ). Finally, WKNN classifier is applied to enhance the properties of the classification task between images in which similar levels of background noise are present. Average precision and absolute change degree are calculated to assess the classification performance and the stability of K-means++ algorithm, respectively. Experimental results on three diverse datasets: Caltech-101, Caltech-256 and PASCAL VOC 2011 show that the proposed WVQ method and WKNN method further improve the performance of classification.

임펄스 잡음 제거를 위한 부분 마스크와 라그랑지 보간법에 기반한 필터 알고리즘 (A Filter Algorithm based on Partial Mask and Lagrange Interpolation for Impulse Noise Removal)

  • 천봉원;김남호
    • 한국정보통신학회논문지
    • /
    • 제26권5호
    • /
    • pp.675-681
    • /
    • 2022
  • 최근 IoT 기술과 AI의 발전에 따라 다양한 분야에서 무인화와 자동화가 진행되고 있으며, 사물인식과 객체분류 등 자동화의 기반이 되는 영상처리에 대한 관심이 높아지고 있다. 영상처리 과정에서 잡음 제거는 영상의 품질 또는 시스템의 정확성과 신뢰성에 큰 영향을 미치는 과정으로 다양한 연구가 진행되고 있으나, 영상에서 임펄스 잡음의 밀도가 높은 영역에 대한 영상을 복원하기 어렵다는 문제점이 있다. 따라서 본 논문은 영상에서 임펄스 잡음 훼손된 영역을 복원하기 위해 부분 마스크와 라그랑지 보간법에 기반한 필터 알고리즘을 제안한다. 제안한 알고리즘은 필터링 마스크와 잡음 추정치를 서로 비교하여 필터링 과정을 스위칭하였으며, 영상의 저주파 및 고주파 성분에 따라 퍼지 가중치를 계산하여 영상을 복원하였다.

임펄스 잡음 환경에서 비잡음 화소의 패턴을 사용한 영상복원 (Image Restoration using Pattern of Non-noise Pixels in Impulse Noise Environments)

  • 천봉원;김만고;김남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.407-409
    • /
    • 2021
  • 4차 산업혁명의 영향으로 산업현장에 인공지능 및 자동화와 같은 다양한 기술들이 접목되고 있으며, 이에 따라 데이터처리의 중요성이 높아지고 있다. 디지털 영상은 다양한 원인으로 잡음이 발생할 수 있으며, 영상인식 및 분류, 객체추적과 같은 다양한 시스템에 영향을 미칠 수 있다. 이러한 단점을 보완하기 위해 비잡음 화소의 패턴 정보에 기반한 영상복원 알고리즘을 제안한다. 제안한 알고리즘은 필터링 마스크 내부의 비잡음 화소의 분포에 따라 보간법 적용이 가능한 패턴, 영역 분할에 기반한 패턴, 무작위로 배치된 화소 패턴으로 구분하여 필터링 과정을 스위칭하였으며, 임펄스 잡음에 훼손된 영상에서 디테일한 정보를 보존하며 영상을 복원한다. 제안한 알고리즘은 기존 임펄스 잡음 제거 알고리즘에 비해 우수한 성능을 보였다.

  • PDF

계층적 구조의 신경회로망을 이용한 거리영상의 분할 (Segmentation of Range Images Using Hierachical Structure of Neural Networks)

  • 정인갑;현기호;이준재;하영호
    • 전자공학회논문지B
    • /
    • 제31B권10호
    • /
    • pp.123-129
    • /
    • 1994
  • The segmentation of range image is essential to recognize the three dimensional object. Generally, surface curvature is well-known feature for segmentation and classification of the fange image, but it is sensitive to noies. In this paper, we propose the structure of hierarchical neural network using surface curvature for segmentation of range images. The hierarchical structure of neural networks is robust to noise and the result of segmentaion is better than conventional optimization method of single level.

  • PDF

적응적 특징요소 기반의 지문인식에 관한 연구 (A Study on Adaptive Feature-Factors Based Fingerprint Recognition)

  • 노정석;정용훈;이상범
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1799-1802
    • /
    • 2003
  • This paper has been studied a Adaptive feature-factors based fingerprints recognition in many biometrics. we study preprocessing and matching method of fingerprints image in various circumstances by using optical fingerprint input device. The Fingerprint Recognition Technology had many development until now. But, There is yet many point which the accuracy improves with operation speed in the side. First of all we study fingerprint classification to reduce existing preprocessing step and then extract a Feature-factors with direction information in fingerprint image. Also in the paper, we consider minimization of noise for effective fingerprint recognition system.

  • PDF

Real-time automated detection of construction noise sources based on convolutional neural networks

  • Jung, Seunghoon;Kang, Hyuna;Hong, Juwon;Hong, Taehoon;Lee, Minhyun;Kim, Jimin
    • 국제학술발표논문집
    • /
    • The 8th International Conference on Construction Engineering and Project Management
    • /
    • pp.455-462
    • /
    • 2020
  • Noise which is unwanted sound is a serious pollutant that can affect human health, as well as the working and living environment if exposed to humans. However, current noise management on the construction project is generally conducted after the noise exceeds the regulation standard, which increases the conflicts with inhabitants near the construction site and threats to the safety and productivity of construction workers. To overcome the limitations of the current noise management methods, the activities of construction equipment which is the main source of construction noise need to be managed throughout the construction period in real-time. Therefore, this paper proposed a framework for automatically detecting noise sources in construction sites in real-time based on convolutional neural networks (CNNs) according to the following four steps: (i) Step 1: Definition of the noise sources; (ii) Step 2: Data preparation; (iii) Step 3: Noise source classification using the audio CNN; and (iv) Step 4: Noise source detection using the visual CNN. The short-time Fourier transform (STFT) and temporal image processing are used to contain temporal features of the audio and visual data. In addition, the AlexNet and You Only Look Once v3 (YOLOv3) algorithms have been adopted to classify and detect the noise sources in real-time. As a result, the proposed framework is expected to immediately find construction activities as current noise sources on the video of the construction site. The proposed framework could be helpful for environmental construction managers to efficiently identify and control the noise by automatically detecting the noise sources among many activities carried out by various types of construction equipment. Thereby, not only conflicts between inhabitants and construction companies caused by construction noise can be prevented, but also the noise-related health risks and productivity degradation for construction workers and inhabitants near the construction site can be minimized.

  • PDF

평활화 알고리즘에 따른 자궁경부 분류 모델의 성능 비교 연구 (A Performance Comparison of Histogram Equalization Algorithms for Cervical Cancer Classification Model)

  • 김윤지;박예랑;김영재;주웅;남계현;김광기
    • 대한의용생체공학회:의공학회지
    • /
    • 제42권3호
    • /
    • pp.80-85
    • /
    • 2021
  • We developed a model to classify the absence of cervical cancer using deep learning from the cervical image to which the histogram equalization algorithm was applied, and to compare the performance of each model. A total of 4259 images were used for this study, of which 1852 images were normal and 2407 were abnormal. And this paper applied Image Sharpening(IS), Histogram Equalization(HE), and Contrast Limited Adaptive Histogram Equalization(CLAHE) to the original image. Peak Signal-to-Noise Ratio(PSNR) and Structural Similarity index for Measuring image quality(SSIM) were used to assess the quality of images objectively. As a result of assessment, IS showed 81.75dB of PSNR and 0.96 of SSIM, showing the best image quality. CLAHE and HE showed the PSNR of 62.67dB and 62.60dB respectively, while SSIM of CLAHE was shown as 0.86, which is closer to 1 than HE of 0.75. Using ResNet-50 model with transfer learning, digital image-processed images are classified into normal and abnormal each. In conclusion, the classification accuracy of each model is as follows. 90.77% for IS, which shows the highest, 90.26% for CLAHE and 87.60% for HE. As this study shows, applying proper digital image processing which is for cervical images to Computer Aided Diagnosis(CAD) can help both screening and diagnosing.

순차 데이터간의 유사도 표현에 의한 동영상 분류 (Video Classification System Based on Similarity Representation Among Sequential Data)

  • 이호석;양지훈
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제7권1호
    • /
    • pp.1-8
    • /
    • 2018
  • 동영상 데이터는 시간에 따른 정보는 물론이고, 많은 정보량과 함께 잡음도 포함하고 있기 때문에 이에 대한 간단한 표현을 학습하는 것은 쉽지 않다. 본 연구에서는 이와 같은 동영상 데이터를 추상적이면서 보다 간단하게 표현할 수 있는 순차 데이터간의 유사도 표현 방법과 딥러닝 학습방법을 제안한다. 이는 동영상을 구성하는 이미지 데이터 벡터들 사이의 유사도를 내적으로 표현할 때 그것들이 서로 최대한의 정보를 가질 수 있도록 하는 함수를 구하고 학습하는 것이다. 실제 데이터를 통하여 제안된 방법이 기존의 동영상 분류 방법들보다도 뛰어난 분류 성능을 보임을 확인하였다.