• Title/Summary/Keyword: Image Noise Classification

Search Result 148, Processing Time 0.024 seconds

Multi-type Image Noise Classification by Using Deep Learning

  • Waqar Ahmed;Zahid Hussain Khand;Sajid Khan;Ghulam Mujtaba;Muhammad Asif Khan;Ahmad Waqas
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.143-147
    • /
    • 2024
  • Image noise classification is a classical problem in the field of image processing, machine learning, deep learning and computer vision. In this paper, image noise classification is performed using deep learning. Keras deep learning library of TensorFlow is used for this purpose. 6900 images images are selected from the Kaggle database for the classification purpose. Dataset for labeled noisy images of multiple type was generated with the help of Matlab from a dataset of non-noisy images. Labeled dataset comprised of Salt & Pepper, Gaussian and Sinusoidal noise. Different training and tests sets were partitioned to train and test the model for image classification. In deep neural networks CNN (Convolutional Neural Network) is used due to its in-depth and hidden patterns and features learning in the images to be classified. This deep learning of features and patterns in images make CNN outperform the other classical methods in many classification problems.

A study on Robust Feature Image for Texture Classification and Detection (텍스쳐 분류 및 검출을 위한 강인한 특징이미지에 관한 연구)

  • Kim, Young-Sub;Ahn, Jong-Young;Kim, Sang-Bum;Hur, Kang-In
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.133-138
    • /
    • 2010
  • In this paper, we make up a feature image including spatial properties and statistical properties on image, and format covariance matrices using region variance magnitudes. By using it to texture classification, this paper puts a proposal for tough texture classification way to illumination, noise and rotation. Also we offer a way to minimalize performance time of texture classification using integral image expressing middle image for fast calculation of region sum. To estimate performance evaluation of proposed way, this paper use a Brodatz texture image, and so conduct a noise addition and histogram specification and create rotation image. And then we conduct an experiment and get better performance over 96%.

Image Classification Method using Independent Component Analysis and Normalization (독립성분해석과 정규화를 이용한 영상분류 방법)

  • Hong, Jun-Sik;Ryu, Jeong-Woong
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.9
    • /
    • pp.629-633
    • /
    • 2001
  • In this paper, we improve noise tolerance in image classification by combining ICA(Independent Component Analysis) with Normalization. When we add noise to the raw image data the degree of noise tolerance becomes N(0, 0.4) for PCA and N(0, 0.53) for ICA. However, when we use the preprocessing approach the degree of noise tolerance after Normalization becomes N(0, 0.75), which shows the improvement of noise tolerance in classification.

  • PDF

A Comparison of Classification Techniques in Hyperspectral Image (하이퍼스펙트럴 영상의 분류 기법 비교)

  • 가칠오;김대성;변영기;김용일
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.251-256
    • /
    • 2004
  • The image classification is one of the most important studies in the remote sensing. In general, the MLC(Maximum Likelihood Classification) classification that in consideration of distribution of training information is the most effective way but it produces a bad result when we apply it to actual hyperspectral image with the same classification technique. The purpose of this research is to reveal that which one is the most effective and suitable way of the classification algorithms iii the hyperspectral image classification. To confirm this matter, we apply the MLC classification algorithm which has distribution information and SAM(Spectral Angle Mapper), SFF(Spectral Feature Fitting) algorithm which use average information of the training class to both multispectral image and hyperspectral image. I conclude this result through quantitative and visual analysis using confusion matrix could confirm that SAM and SFF algorithm using of spectral pattern in vector domain is more effective way in the hyperspectral image classification than MLC which considered distribution.

  • PDF

A Study on Image Pixel Classification Using Directional Scales (방향성 정보 척도를 이용한 영상의 픽셀분류 방법에 관한 연구)

  • 박중순;김수겸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.587-592
    • /
    • 2004
  • Pixel classification is one of basic issues of image processing. The general characteristics of the pixels belonging to various classes are discussed and the radical principles of pixel classification are given. At the same time, a pixel classification scheme based on image information scales is proposed. The proposed method is overcome that computation amount become greater and contents easily get turned. And image directional scales has excellent anti-noise performance. In the result of experiment. good efficiency is showed compare with other methods.

A Mixed Nonlinear Filter for Image Restoration under AWGN and Impulse Noise Environment

  • Gao, Yinyu;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.591-596
    • /
    • 2011
  • Image denoising is a key issue in all image processing researches. Generally, the quality of an image could be corrupted by a lot of noise due to the undesired conditions of image acquisition phase or during the transmission. Many approaches to image restoration are aimed at removing either Gaussian or impulse noise. Nevertheless, it is possible to find them operating on the same image, which is called mixed noise and it produces a hard damage. In this paper, we proposed noise type classification method and a mixed nonlinear filter for mixed noise suppression. The proposed filtering scheme applies a modified adaptive switching median filter to impulse noise suppression and an efficient nonlinear filer was carried out to remove Gaussian noise. The simulation results based on Matlab show that the proposed method can remove mixed Gaussian and impulse noise efficiently and it can preserve the integrity of edge and keep the detailed information.

Block and Fuzzy Techniques Based Forensic Tool for Detection and Classification of Image Forgery

  • Hashmi, Mohammad Farukh;Keskar, Avinash G.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1886-1898
    • /
    • 2015
  • In today’s era of advanced technological developments, the threats to the authenticity and integrity of digital images, in a nutshell, the threats to the Image Forensics Research communities have also increased proportionately. This happened as even for the ‘non-expert’ forgers, the availability of image processing tools has become a cakewalk. This image forgery poses a great problem for judicial authorities in any context of trade and commerce. Block matching based image cloning detection system is widely researched over the last 2-3 decades but this was discouraged by higher computational complexity and more time requirement at the algorithm level. Thus, for reducing time need, various dimension reduction techniques have been employed. Since a single technique cannot cope up with all the transformations like addition of noise, blurring, intensity variation, etc. we employ multiple techniques to a single image. In this paper, we have used Fuzzy logic approach for decision making and getting a global response of all the techniques, since their individual outputs depend on various parameters. Experimental results have given enthusiastic elicitations as regards various transformations to the digital image. Hence this paper proposes Fuzzy based cloning detection and classification system. Experimental results have shown that our detection system achieves classification accuracy of 94.12%. Detection accuracy (DAR) while in case of 81×81 sized copied portion the maximum accuracy achieved is 99.17% as regards subjection to transformations like Blurring, Intensity Variation and Gaussian Noise Addition.

A Noise-Tolerant Hierarchical Image Classification System based on Autoencoder Models (오토인코더 기반의 잡음에 강인한 계층적 이미지 분류 시스템)

  • Lee, Jong-kwan
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • This paper proposes a noise-tolerant image classification system using multiple autoencoders. The development of deep learning technology has dramatically improved the performance of image classifiers. However, if the images are contaminated by noise, the performance degrades rapidly. Noise added to the image is inevitably generated in the process of obtaining and transmitting the image. Therefore, in order to use the classifier in a real environment, we have to deal with the noise. On the other hand, the autoencoder is an artificial neural network model that is trained to have similar input and output values. If the input data is similar to the training data, the error between the input data and output data of the autoencoder will be small. However, if the input data is not similar to the training data, the error will be large. The proposed system uses the relationship between the input data and the output data of the autoencoder, and it has two phases to classify the images. In the first phase, the classes with the highest likelihood of classification are selected and subject to the procedure again in the second phase. For the performance analysis of the proposed system, classification accuracy was tested on a Gaussian noise-contaminated MNIST dataset. As a result of the experiment, it was confirmed that the proposed system in the noisy environment has higher accuracy than the CNN-based classification technique.

Wavelet Pair Noise Removal for Increasing the Classification Accuracy of a Remotely Sensed Image

  • Jin, Hong-Sung;Yoo, Hee-Young;Eom, Joo-Young;Choi, II-Su;Han, Dong-Yeob
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.215-223
    • /
    • 2009
  • The noise removal as a preprocessing was tried with various kinds of wavelet pairs. Wavelet transform for 2D images generally uses the same wavelets as basis functions in horizontal and vertical directions. A method with different wavelets was tried for each direction separately, which gives more precise interpretation of the classification. Total 486 pairs of wavelets from nine basis functions were tried to remove image noises. The classification accuracies before and after the noise removal were compared. Although all kinds of wavelet pairs showed the increased accuracies in classification, there were best and worst wavelet pairs depending on the data sets. Wavelet pairs with low energy percentage of LL band showed the high classification accuracy. A pattern was found in the results that very similar vertical accuracy was distributed for each horizontal ones. Since Haar is the shortest length filter, Haar could be a predictor wavelet to find the good wavelet pairs.

Edge-Preserving Image Restoration Using Block-Based Edge Classification (블록기반의 윤곽선 분류를 이용한 윤곽선 보존 영상복원 기법)

  • 이상광;호요성
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.33-36
    • /
    • 1998
  • Most image restoration problems are ill-posed and need to e regularized. A difficult task in image regularization is to avoid smoothing of image edges. In this paper, were proposed an edge-preserving image restoration algorithm using block-based edge classification. In order to exploit the local image characteristics, we classify image blocks into edge and no-edge blocks. We then apply an adaptive constrained least squares (CLS) algorithm to eliminate noise around the edges. Experimental results demonstrate that the proposed algorithm can preserve image edges during the regularization process.

  • PDF