• Title/Summary/Keyword: Image Navigation

Search Result 709, Processing Time 0.026 seconds

In-Orbit Test Operational Validation of the COMS Image Data Acquisition and Control System (천리안 송수신자료전처리시스템의 궤도상 시험 운영 검증)

  • Lim, Hyun-Su;Ahn, Sang-Il;Seo, Seok-Bae;Park, Durk-Jong
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • The Communication Ocean and Meteorological Satellite(COMS), the first geostationary observation satellite, was successfully launched on June 27th in 2010. The raw data of Meteorological Imager(MI) and Geostationary Ocean Color Imager(GOCI), the main payloads of COMS, is delivered to end-users through the on-ground processing. The COMS Image Data Acquisition and Control System(IDACS) developed by Korea Aerospace Research Institute(KARI) in domestic technologies performs radiometric and geometric corrections to raw data and disseminates pre-processed image data and additional data to end-users through the satellite. Currently the IDACS is in the nominal operations phase after successful in-orbit testing and operates in National Meteorological Satellite Center, Korea Ocean Satellite Center, and Satellite Operations Center, During the in-orbit test period, validations on functionalities and performance IDACS were divided into 1) image data acquisition and transmission, 2) preprocessing of MI and GOCI raw data, and 3) end-user dissemination. This paper presents that IDACS' operational validation results performed during the in-orbit test period after COMS' launch.

Depth-based Correction of Side Scan Sonal Image Data and Segmentation for Seafloor Classification (수심을 고려한 사이드 스캔 소나 자료의 보정 및 해저면 분류를 위한 영상분할)

  • 서상일;김학일;이광훈;김대철
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.2
    • /
    • pp.133-150
    • /
    • 1997
  • The purpose of this paper is to develop an algorithm of classification and interpretation of seafloor based on side scan sonar data. The algorithm consists of mosaicking of sonar data using navigation data, correction and compensation of the acouctic amplitude data considering the charateristics of the side scan sonar system, and segmentation of the seafloor using digital image processing techniques. The correction and compensation process is essential because there is usually difference in acoustic amplitudes from the same distance of the port-side and the starboard-side and the amplitudes become attenuated as the distance is increasing. In this paper, proposed is an algorithm of compensating the side scan sonar data, and its result is compared with the mosaicking result without any compensation. The algorithm considers the amplitude characteristics according to the tow-fish's depth as well as the attenuation trend of the side scan sonar along the beam positions. This paper also proposes an image segmentation algorithm based on the texture, where the criterion is the maximum occurence related with gray level. The preliminary experiment has been carried out with the side scan sonar data and its result is demonstrated.

A Study on the SNR Estimation Performance of Hierarchical 16QAM (계층 16QAM의 SNR 추정 성능에 대한 연구)

  • Kwak, Jae-Min
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.975-981
    • /
    • 2012
  • The SNR estimation performance of hierarchical 16QAM system, which is adopted to simultaneous transmission or efficient image transmission system, is analyzed. Hierarchical 16QAM is modulation system which has different constellation shape from conventional QAM and can provide users with high quality and low quality of data services simultaneously by controlling hierarchical modulation parameter. Assuming AWGN channel, SNR estimation performance characteristics are investigated considering hierarchical modulation parameter and type of constellation points. From simulation results, it is found that constellation point showing superior SNR estimation performance relative to other points is exist. Also, it is known that according to hierarchical modulation parameter, SNR estimation range with more accurate estimation performance is divided.

Estimation of Angular Acceleration By a Monocular Vision Sensor

  • Lim, Joonhoo;Kim, Hee Sung;Lee, Je Young;Choi, Kwang Ho;Kang, Sung Jin;Chun, Sebum;Lee, Hyung Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • Recently, monitoring of two-body ground vehicles carrying extremely hazardous materials has been considered as one of the most important national issues. This issue induces large cost in terms of national economy and social benefit. To monitor and counteract accidents promptly, an efficient methodology is required. For accident monitoring, GPS can be utilized in most cases. However, it is widely known that GPS cannot provide sufficient continuity in urban cannons and tunnels. To complement the weakness of GPS, this paper proposes an accident monitoring method based on a monocular vision sensor. The proposed method estimates angular acceleration from a sequence of image frames captured by a monocular vision sensor. The possibility of using angular acceleration is investigated to determine the occurrence of accidents such as jackknifing and rollover. By an experiment based on actual measurements, the feasibility of the proposed method is evaluated.

Preliminary Study of Deep Learning-based Precipitation

  • Kim, Hee-Un;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.423-430
    • /
    • 2017
  • Recently, data analysis research has been carried out using the deep learning technique in various fields such as image interpretation and/or classification. Various types of algorithms are being developed for many applications. In this paper, we propose a precipitation prediction algorithm based on deep learning with high accuracy in order to take care of the possible severe damage caused by climate change. Since the geographical and seasonal characteristics of Korea are clearly distinct, the meteorological factors have repetitive patterns in a time series. Since the LSTM (Long Short-Term Memory) is a powerful algorithm for consecutive data, it was used to predict precipitation in this study. For the numerical test, we calculated the PWV (Precipitable Water Vapor) based on the tropospheric delay of the GNSS (Global Navigation Satellite System) signals, and then applied the deep learning technique to the precipitation prediction. The GNSS data was processed by scientific software with the troposphere model of Saastamoinen and the Niell mapping function. The RMSE (Root Mean Squared Error) of the precipitation prediction based on LSTM performs better than that of ANN (Artificial Neural Network). By adding GNSS-based PWV as a feature, the over-fitting that is a latent problem of deep learning was prevented considerably as discussed in this study.

Using Omnidirectional Images for Semi-Automatically Generating IndoorGML Data

  • Claridades, Alexis Richard;Lee, Jiyeong;Blanco, Ariel
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.319-333
    • /
    • 2018
  • As human beings spend more time indoors, and with the growing complexity of indoor spaces, more focus is given to indoor spatial applications and services. 3D topological networks are used for various spatial applications that involve navigation indoors such as emergency evacuation, indoor positioning, and visualization. Manually generating indoor network data is impractical and prone to errors, yet current methods in automation need expensive sensors or datasets that are difficult and expensive to obtain and process. In this research, a methodology for semi-automatically generating a 3D indoor topological model based on IndoorGML (Indoor Geographic Markup Language) is proposed. The concept of Shooting Point is defined to accommodate the usage of omnidirectional images in generating IndoorGML data. Omnidirectional images were captured at selected Shooting Points in the building using a fisheye camera lens and rotator and indoor spaces are then identified using image processing implemented in Python. Relative positions of spaces obtained from CAD (Computer-Assisted Drawing) were used to generate 3D node-relation graphs representing adjacency, connectivity, and accessibility in the study area. Subspacing is performed to more accurately depict large indoor spaces and actual pedestrian movement. Since the images provide very realistic visualization, the topological relationships were used to link them to produce an indoor virtual tour.

G-File stored in the location information management algorithm (G-File에 저장된 위치정보 관리 알고리즘)

  • Choi, Sang-Kyoon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.742-748
    • /
    • 2011
  • G-File on the position of the photo shoot pictures with built-in picture file to the user, the location and orientation of the image files using the data refers to the [1]. G-File is to store photo files, photo files and receiving means for receiving input, and picture files, photos and location information extracted by separating the subject's location information with location information and location analysis by means of the corresponding coordinates on the map including the location indicated in the guide means is characterized in that. In this paper, the G-File on the location information stored in the algorithm that can be managed is proposed. G-File on the algorithm used to manage the information to the user, G-File management is to provide convenience.

Optimal Sub-bands Decision for Robust Watermarking (강건한 워터마킹을 위한 최적 부대역 결정)

  • Kim, Yoon-Ho;Kim, Tae-Gon
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.1
    • /
    • pp.105-111
    • /
    • 2007
  • This paper is concerned with fuzzy inference-based optimal sub-bands decision scheme which is to be embedded the watermark. It concentrated not only on design of fuzzy inference algorithm but also on human visual parameters (HVP), such as contrast sensitivity, texture degree. In the first, such human visual parameters as contrast sensitivity, texture degree as well as statistical characteristics are involved to select the optimal coefficients region. Secondly, fuzzy if - then rule which can be able to adapt the wide variety of environments is developed. The performance of proposed approach is evaluated with respect to the imperceptibility and correctness of watermark. According to some experimental results, contrast sensitivity function is superior in smooth image. On the other hand, statistical characteristics provide good results in rough images.

  • PDF

Real-time Slant Face detection using improvement AdaBoost algorithm (개선한 아다부스트 알고리즘을 이용한 기울어진 얼굴 실시간 검출)

  • Na, Jong-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.3
    • /
    • pp.280-285
    • /
    • 2008
  • The traditional face detection method is to use difference picture method are used to detect movement. However, most do not consider this mathematical approach using real-time or real-time implementation of the algorithm is complicated, not easy. This paper, the first to detect real-time facial image is converted YCbCr and RGB video input. Next, you convert the difference between video images of two adjacent to obtain and then to conduct Glassfire Labeling. Labeling value compared to the threshold behavior Area recognizes and converts video extracts. Actions to convert video to conduct face detection, and detection of facial characteristics required for the extraction and use of AdaBoost algorithm.

  • PDF

A Basic Study on Maritime English Education and the Need for Raising the Instructor Profile

  • Davy, James G.;Noh, Chang-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.34 no.7
    • /
    • pp.533-538
    • /
    • 2010
  • English is the accepted common working language of the maritime world and being competent in its use is essential to the safety of ships, their crews and the marine environment. This paper is a response to the urgent need to find a suitable solution to the problem of providing maritime students with quality instruction in Maritime English. This paper will show what type of English instructor is best suited to help cadets have at least a basic grasp of Maritime English communication, with a view to possessing the level required by STCW 95 within the shortest time. It presents ways that maritime institutes can develop their own qualified or 'marinated' English Instructors and what qualifications should be required. It is concluded that by further essential research, interviews and questionnaires etc., the language needs of the university and shipping industry in Korea as a whole can be clearly verified. By examining such data, the present language education systems can be evaluated as to efficacy and relevance, allowing the establishment and implementation of 'best practice' within the training institute. This will result in making excellent informed decisions and choices about how best to improve the language competencies of graduating cadets, thereby creating the catalyst for the success of future seafarers whilst raising the image of the institute and Korean shipping worldwide.