• Title/Summary/Keyword: Image Motion Model

Search Result 340, Processing Time 0.025 seconds

The Implementation of Day and Night Intruder Motion Detection System using Arduino Kit (아두이노 키트를 이용한 주야간 침입자 움직임 감지 시스템 구현)

  • Young-Oh Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.919-926
    • /
    • 2023
  • In this paper, we implemented the surveillance camera system capable of day and night shooting. To this end, it is designed to capture clear images even at night using a CMOS image sensor as well as an IR-LED. In addition, a relatively simple motion detection algorithm was proposed through color model separation. Motions can be detected by extracting only the H channel from the color model, dividing the image into blocks, and then applying the block matching method using the average color value between consecutive frames. When motions are detected during filming, an alarm sounds automatically and a day and night motion detection system is implemented that can capture and save the event screen to a PC.

Robust Motion Estimation for Luminance Fluctuation Sequence (조명 변화에 강건한 움직임 추정 기법)

  • Lee, Im-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1918-1924
    • /
    • 2010
  • This In this paper, we propose an efficient algorithm for motion estimation of the image sequences with luminance fluctuation. For such sequences, conventional motion estimation methods based on the difference of pixel values usually produce the erroneous motion information. The proposed algorithm defines the luminance fluctuation as a linear model with gain and offset parameter, and extracts motion information using gradient and phase of the corresponding local region within consecutive frames. Therefor the method is robust to the luminance change of the frames. We test our algorithm for the ground truth sequence with artificially added luminance change and motion, and real sequences corrupted by the flicker. The results shows that the proposed algorithm outperforms the conventional methods.

Visual Tracking Using Snake Algorithm Based on Optical Flow Information

  • Kim, Won;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.13-16
    • /
    • 1999
  • An active contour model, Snake, was developed as a useful segmenting and tracking tool lot rigid or non-rigid (i.e. deformable) objects by Kass in 1987 In this research, Snake is newly designed to cover this large moving case. Image flow energy is proposed to give Snake the motion information of the target object. By this image flow energy Snake's nodes can move uniformly along the direction of the target motion in spite of the existences of local minima. Furthermore, when the motion is too large to apply image flow energy to tracking, a jump mode is proposed for solving the problem. The vector used to make Snake's nodes jump to the new location can be obtained by processing the image flow. The effectiveness of the proposed Snake is confirmed by some simulations.

  • PDF

High-Resolution Image Reconstruction Considering the Inaccurate Sub-Pixel Motion Information (부정확한 부화소 단위의 움직임 정보를 고려한 고해상도 영상 재구성 연구)

  • Park, Jin-Yeol;Lee, Eun-Sil;Gang, Mun-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.2
    • /
    • pp.169-178
    • /
    • 2001
  • The demand for high-resolution images is gradually increasing, whereas many imaging systems have been designed to allow a certain level of aliasing during image acquisition. Thus, digital image processing approaches have recently been investigated to reconstruct a high-resolution image from aliased low-resolution images. However, since the sub-pixel motion information is assumed to be accurate in most conventional approaches, the satisfactory high-resolution image cannot be obtained when the sub-pixel motion information is inaccurate. Therefore, in this paper we propose a new algorithm to reduce the distortion in the reconstructed high-resolution image due to the inaccuracy of sub-pixel motion information. For this purpose, we analyze the effect of inaccurate sub-pixel motion information on a high-resolution image reconstruction, and model it as zero-mean additive Gaussian errors added respectively to each low-resolution image. To reduce the distortion we apply the modified multi-channel image deconvolution approach to the problem. The validity of the proposed algorithm is both theoretically and experimentally demonstrated in this paper.

  • PDF

Respiratory Motion Correction on PET Images Based on 3D Convolutional Neural Network

  • Hou, Yibo;He, Jianfeng;She, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2191-2208
    • /
    • 2022
  • Motion blur in PET (Positron emission tomography) images induced by respiratory motion will reduce the quality of imaging. Although exiting methods have positive performance for respiratory motion correction in medical practice, there are still many aspects that can be improved. In this paper, an improved 3D unsupervised framework, Res-Voxel based on U-Net network was proposed for the motion correction. The Res-Voxel with multiple residual structure may improve the ability of predicting deformation field, and use a smaller convolution kernel to reduce the parameters of the model and decrease the amount of computation required. The proposed is tested on the simulated PET imaging data and the clinical data. Experimental results demonstrate that the proposed achieved Dice indices 93.81%, 81.75% and 75.10% on the simulated geometric phantom data, voxel phantom data and the clinical data respectively. It is demonstrated that the proposed method can improve the registration and correction performance of PET image.

Motion-Field Segmentation for Video Coding (동영상 부호화를 위한 움직임 필터 영역화)

  • 강동욱;이승준;이충웅
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.141-148
    • /
    • 1994
  • This paper presents a new method for reducing the blocking artifacts there by increasing the prediction gains of the block-based motion compensation keeping the amount of the motion information to be transmitted intact. The new method improves the motion compensation along the edges of moving objects by segmenting the motion field at the pixel resolution based on the model that the motion compensated image is the maximum a poseriori estimate of the current frame.

  • PDF

Facial Features and Motion Recovery using multi-modal information and Paraperspective Camera Model (다양한 형식의 얼굴정보와 준원근 카메라 모델해석을 이용한 얼굴 특징점 및 움직임 복원)

  • Kim, Sang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.563-570
    • /
    • 2002
  • Robust extraction of 3D facial features and global motion information from 2D image sequence for the MPEG-4 SNHC face model encoding is described. The facial regions are detected from image sequence using multi-modal fusion technique that combines range, color and motion information. 23 facial features among the MPEG-4 FDP (Face Definition Parameters) are extracted automatically inside the facial region using color transform (GSCD, BWCD) and morphological processing. The extracted facial features are used to recover the 3D shape and global motion of the object using paraperspective camera model and SVD (Singular Value Decomposition) factorization method. A 3D synthetic object is designed and tested to show the performance of proposed algorithm. The recovered 3D motion information is transformed into global motion parameters of FAP (Face Animation Parameters) of the MPEG-4 to synchronize a generic face model with a real face.

Dynamic Human Pose Tracking using Motion-based Search (모션 기반의 검색을 사용한 동적인 사람 자세 추적)

  • Jung, Do-Joon;Yoon, Jeong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2579-2585
    • /
    • 2010
  • This paper proposes a dynamic human pose tracking method using motion-based search strategy from an image sequence obtained from a monocular camera. The proposed method compares the image features between 3D human model projections and real input images. The method repeats the process until predefined criteria and then estimates 3D human pose that generates the best match. When searching for the best matching configuration with respect to the input image, the search region is determined from the estimated 2D image motion and then search is performed randomly for the body configuration conducted within that search region. As the 2D image motion is highly constrained, this significantly reduces the dimensionality of the feasible space. This strategy have two advantages: the motion estimation leads to an efficient allocation of the search space, and the pose estimation method is adaptive to various kinds of motion.

Robust Action Recognition Using Multiple View Image Sequences (다중 시점 영상 시퀀스를 이용한 강인한 행동 인식)

  • Ahmad, Mohiuddin;Lee, Seong-Whan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.509-514
    • /
    • 2006
  • Human action recognition is an active research area in computer vision. In this paper, we present a robust method for human action recognition by using combined information of human body shape and motion information with multiple views image sequence. The principal component analysis is used to extract the shape feature of human body and multiple block motion of the human body is used to extract the motion features of human. This combined information with multiple view sequences enhances the recognition of human action. We represent each action using a set of hidden Markov model and we model each action by multiple views. This characterizes the human action recognition from arbitrary view information. Several daily actions of elderly persons are modeled and tested by using this approach and they are correctly classified, which indicate the robustness of our method.

  • PDF

Combined Active Contour Model and Motion Estimation for Real-Time Object Tracking (능동윤곽모델과 움직임 추정을 결합한 실시간 객체 추적 기술)

  • Kim, Dae-Hee;Lee, Dong-Eun;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.64-72
    • /
    • 2007
  • In this paper we proposed a combined active contour model and motion estimation-based object tracking technique. After assigning the initial contour, we find the object's boundary and update the initial contour by using object's motion information. In the following frames, similar snake algorithm is repeated to make continuously estimated object's region. The snake algerian plays a role in separating the object from background, while motion estimation provides object's moving direction and displacement. The proposed algorithm provides equivalently stable, robust, tracking performance with significantly reduced amount of computation, compared with the existing shape model-based algorithms.