본 연구는 초등학교에서 엔트리의 인공지능 모델을 활용한 융합교육 사례이다. 교과는 영어이며 그림을 그리는 미술과와의 융합 활동과 엔트리의 인공지능모델중 이미지 학습 모델을 기반으로 수업을 진행하였다. 영어과의 말하기 및 쓰기 교육의 학습목표에 효과적으로 달성하기 위해 미술과와 SW를 융합하여 수업을 설계하였다. 학생들은 인공지능을 활용한 의사소통을 경험하고 자신감이 향상되었으며, 듣고 말하는 표현뿐만 아니라 그림이나 사진 등 다양한 매체로 표현하며 창의성과 의사소통 능력을 증진할 수 있었다. 또한 수업의 효과성을 알아보기 위해 학생들에게 설문을 진행하여 그 결과를 분석하였다. 분석 결과 학생들의 수업 참여율, 수업이후 인공지능에 대한 이해 정도, 인공지능에 대한 관심, 인공지능 수업 만족도 등에 긍정적 영향을 주었음을 알 수 있었다.
본 논문은 고화질 2차원 전신 영상을 입력으로 받아 영상 속 인물이 입고 있는 의상 패턴과 체형 정보를 추정한 후, 이를 반영한 3차원 가상 휴먼의 생성 기법을 제안한다. 의상의 패턴을 얻기 위해서 Cascade Mask R-CNN을 이용하여 의상 분할을 진행한다. 이후 Pix2Pix로 경계를 블러 및 배경색을 추정하고, UV-Map 기반으로 변환하여 3차원 의상 메쉬의 UV-Map을 얻을 수 있다. 또한, SMPL-X를 이용하여 체형 정보를 얻고 이를 기반으로 의상과 신체의 기본 메쉬를 변형한다. 앞서 얻은 의상 UV-Map, 체형이 반영된 의상과 신체의 메쉬를 이용해 최근 각광받고 있는 게임 엔진인 언리얼 엔진에서 렌더링하여 최종적으로 사용자가 그의 외형이 반영된 3차원 가상 휴먼의 애니메이션을 볼 수 있도록 한다.
국내 웹툰 산업 매출액이 전년도 대비 약 65% 폭발적 성장을 하였고 향후 매출 규모가 1조원을 돌파할 것이라 예상을 하고 있다. 웹툰 제작 과정을 살펴보면 스토리와 콘티와 같이 창작을 필요로 하는 작업도 있지만, 스케치와 펜터치와 같은 단순 반복 작업도 있기 때문에 최근 주목받고 있는 딥러닝 기반 인간자세 추정방법을 사용하여 간소화 할 수 있다면, 웹툰 제작 과정을 효과적으로 개선할 수 있다. 따라서 본 연구는 인간자세 추정방법을 사용하여 인간의 동작을 스케치한 2차원 웹툰 캐릭터와 관절을 매칭 시켜서, 인간의 동작에 따라서 캐릭터의 동작을 생성시키는 방법을 제안한다. 이를 위해 생성한 2차원 캐릭터를 SVG 파일 형식인 벡터화된 그래픽 이미지로 생성시켜 인간자세의 관절을 나타내는 스켈레톤과 매칭을 시켰다. 실험결과를 통해 2차원 웹툰 캐릭터의 포즈가 웹 카메라의 사용자 자세와 동일한 동작을 생성시킬 수 있는 것을 확인할 수 있었다. 또한 저장한 정지 이미지에서 하나의 포즈를 선별하여 필요한 장면에 삽입할 수도 있고, 연속 동작에 대하여 비디오로 녹화하여 포즈 선별을 할 수 있다는 점도 확인하였다. 제안한 포즈 생성 방법은 기존의 포즈 투 포즈 방식 애니메이션 포즈 생성에 큰 기여를 할 수 있을 것으로 기대된다.
본 논문은 눈 랜드마크 위치 검출과 시선 방향 벡터 추정이 하나의 딥러닝 네트워크로 통합된 시선 추정 네트워크를 제안한다. 제안하는 네트워크는 Stacked Hourglass Network를 백본(Backbone) 구조로 이용하며, 크게 랜드마크 검출기, 특징 맵 추출기, 시선 방향 추정기라는 세 개의 부분(Part)으로 구성되어 있다. 랜드마크 검출기에서는 눈 랜드마크 50개 포인트의 좌표를 추정하며, 특징 맵 추출기에서는 시선 방향 추정을 위한 눈 이미지의 특징 맵을 생성한다. 그리고 시선 방향 추정기에서는 각 출력 결과를 조합하여 최종 시선 방향 벡터를 추정한다. 제안하는 네트워크는 UnityEyes 데이터셋을 통해 생성된 가상의 합성 눈 이미지와 랜드마크 좌표 데이터를 이용하여 학습하였으며, 성능 평가는 실제 사람의 눈 이미지로 구성된 MPIIGaze 데이터셋을 이용하였다. 실험을 통해 시선 추정 오차는 3.9°의 성능을 보였으며, 네트워크의 추정 속도는 42 FPS(Frame per second)로 측정되었다.
Purpose: To analyze Korean nurse-related channels and video titles on YouTube, the world's largest online video sharing and social media platform, to clarify public opinion and image of nurses. We seek utilization strategies and measures through current status analysis. Methods: Data is collected by crawling video information related to Korean nurses, and correlation is analyzed with frequent word analysis and keyword network analysis. Results: Through the YouTube algorithm, 2,273 videos of 'Nurse' were analyzed in order of recent views, relevance, and rating, and 2,912 videos searched for with the keyword 'Nurse + Hospital, COVID-19, Awareness, University, National Examination' were analyzed. Numerous videos were uploaded, and nursing work that was uploaded in the form of a vlog recorded a high number of views. Conclusion: We could see if the YouTube video shows images of nurses. It has been confirmed that various information is being exchanged rather than information just for promotional purposes.
본 연구는 드라마 <명동백작>(2004)을 통해서 드라마가 시인 김수영과 그의 문학작품을 대중에게 전달하는 전략을 검토한다. 이 드라마는 김수영 시인이 내적 갈등을 겪는 장면에 시를 삽입함으로써 시인의 내면과 그의 문학관을 보여주는 한편으로, 비교적 일반에 덜 알려진 시를 제시하여 대중들의 시에 대한 이해를 넓힌다. 또한 드라마는 갈등 요소를 적절히 배치함으로써 시청자들의 흥미를 유지하며, 그 갈등이 그의 삶과 시세계에 어떠한 영향을 미쳤는가를 효과적으로 보여준다. 이로써 드라마는 김수영을 단순히 「풀」의 시인이 아니라 한 사람의 생활인이자, 전쟁에서부터 4.19혁명까지 복잡한 역사적 시대를 살아간 의지의 시인으로 형상화한다. 그러므로 드라마 <명동백작>은 영상을 통하여 당대의 역사적 전환과 사회 문제, 당대의 문학장과 함께 김수영이라는 한 사람의 시인을 입체적으로 형상화한 의미 있는 텍스트이다.
오링은 기계 부품들 사이에서 틈을 메워주는 역할을 한다. 지금까지 불량품 선별은 육안 및 수작업으로 수행하여 분류 오류가 자주 발생한다. 따라서 사람의 개입이 없는 카메라 기반의 불량품 분류 시스템이 필요하다. 그러나 카메라 입력 영상에서 배경으로부터 필요 영역을 분리하기 위해 이진화 과정이 필요하다. 본 논문에서는 주변 조명의 변화나 반사 등의 요인으로 인해 단일 임계값 이진화를 적용하기 어려워, 주변 화소 값을 함께 고려한 적응형 이진화 기법을 적용한다. 또한 누락되는 화소 부분을 보완하기 위해 컨벡스 헐 기법도 함께 적용한다. 그리고 분리된 영역에 적용할 학습 모델은 불량 특성이 비선형인 경우에 유리한 잔류 오차 기반의 심층학습 신경망 모델을 적용한다. 실험을 통해 제안하는 시스템이 오링의 불량 판별 자동화에 적용 가능하다는 것을 제시한다.
딥러닝 기반의 지도학습은 다양한 응용 분야에서 비약적인 발전을 이루었다. 그러나 많은 지도 학습 방법들은 학습 및 테스트 데이터가 동일한 분포에서 추출된다는 공통된 가정 하에 이루어진다. 이 제약 조건에서 벗어나는 경우, 학습 도메인에서 훈련된 딥러닝 네트워크는 도메인 간의 분포 차이로 인하여 테스트 도메인에서의 성능이 급격하게 저하될 가능성이 높다. 도메인 적응 기술은 레이블이 풍부한 학습 도메인 (소스 도메인)의 학습된 지식을 기반으로 레이블이 불충분한 테스트 도메인 (타겟 도메인) 에서 성공적인 추론을 할 수 있도록 딥러닝 네트워크를 훈련하는 전이 학습의 한 방법론이다. 특히 비지도 도메인 적응 기술은 타겟 도메인에 레이블이 전혀 없는 이미지 데이터에만 접근할 수 있는 상황을 가정하여 도메인 적응 문제를 다룬다. 본 논문에서는 이러한 비지도 학습 기반의 도메인 적응 기술들에 대해 탐구한다.
원거리에서 특정 영역의 물리적 특성 또는 상황에 대한 정보를 얻기 위해 원격 탐사 영상에 객체 검출 기법이 연구되고 있다. 이때 저해상도인 원격 영상은 정보의 손실로 인해 객체 검출의 정확도가 떨어지는 문제가 발생한다. 본 논문에서는 이러한 문제점을 해결하기 위해 초고해상도 기법과 객체 검출 방법을 하나의 네트워크로 구성하여 원격 영상에서 객체 검출의 성능을 높이는 방법을 제안한다. 제안한 방법은 심층 잔차 밀집 기반의 네트워크를 구성하여 저해상도 영상에서 객체의 특징을 복원하고자 하였다. 추가적으로 이를 객체 검출 단계인 YOLOv5와 하나의 네트워크로 구성함으로써 객체 검출의 성능을 향상시키고자 하였다. 제안한 방법은 저해상도 영상을 위해 VEDAI 데이터를 이용하였으며 차량 검출에서 VISIBLE 기준으로 mAP@0.5에 대해 81.38%까지 향상됨을 확인하였다.
최근 인터넷을 통한 동영상 제공 서비스가 확대됨에 따라 높은 품질의 온라인 컨텐츠에 대한 수요가 급증하고 있다. 그런데 넓은 동적 범위 (dynamic range)를 표현할 수 있는 high dynamic range (HDR) 컨텐츠의 공급은 수요를 따라가지 못하고 있는 실정이다. 따라서 본 논문에서는 HDR 영상 제작의 한 방법으로서, 여러 노출값에서 촬영된 프레임들로 구성된 low dynamic range (LDR) 동영상을 이용해 HDR 영상을 생성하는 방법을 제안한다. 우선, 프레임들 사이에 움직임이 존재하기 때문에 정렬 과정을 통해 이웃 프레임들을 중심 프레임에 맞추어 정렬한다. 이때 내용 (content) 기반의 정렬을 하여 정확도를 높이고, 원래 크기의 입력을 그대로 이용하는 모듈을 함께 사용하여 세부 정보도 잘 살려준다. 그러고 나서 잘 정렬된 다중 프레임들을 합쳐서 하나의 HDR 프레임으로 만들어 준다. 실험을 통해 기존 방법들에 비해 우수한 성능을 보임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.