• 제목/요약/키워드: Image Labeling

검색결과 377건 처리시간 0.031초

SOM과 PRL을 이용한 고유얼굴 기반의 머리동작 인식방법 (A Head Gesture Recognition Method based on Eigenfaces using SOM and PRL)

  • 이우진;구자영
    • 한국정보처리학회논문지
    • /
    • 제7권3호
    • /
    • pp.971-976
    • /
    • 2000
  • In this paper a new method for head gesture recognition is proposed. A the first stage, face image data are transformed into low dimensional vectors by principal component analysis (PCA), which utilizes the high correlation between face pose images. The a self organization map(SM) is trained by the transformed face vectors, in such a that the nodes at similar locations respond to similar poses. A sequence of poses which comprises each model gesture goes through PCA and SOM, and the result is stored in the database. At the recognition stage any sequence of frames goes through the PCA and SOM, and the result is compared with the model gesture stored in the database. To improve robustness of classification, probabilistic relaxation labeling(PRL) is used, which utilizes the contextural information imbedded in the adjacent poses.

  • PDF

Adaptive vigilance parameter를 이용한 ART2에 기반한 레이더 영상에서의 물체 추출 (Radar Image Classification based on ART2 Network using Adaptive Vigilance Parameter)

  • 박은경;김도현;최선아;차의영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (상)
    • /
    • pp.763-766
    • /
    • 2002
  • 레이더 영상에서의 물체 위치는 극좌표계로 주어지기 때문에 직각좌표계로 표현되는 일반적인 물체 추적에서의 클러스터링을 통한 물체 추출 방법은 비효율적이다. 본 논문에서는 이러한 레이더 영상의 특성을 고려하여 개선된 ART2클러스터링 기법을 이용하는 방법을 제안하였다. 이진화와 labeling을 통해 추적하고자 하는 물체 외의 물체나 잡영을 제거한 영상에서의 adaptive vigilance parameter를 이용한 ART2 클러스터링 기법의 적용은 추적하고자 하는 물체를 추출함에 있어 우수한 실험 결과를 보였다.

  • PDF

프로테오믹스 연구를 위한 정량분석 데이터의 해석 (Data analysis for quantitative proteomics research)

  • 권경훈
    • 유전체소식지
    • /
    • 제6권1호
    • /
    • pp.24-28
    • /
    • 2006
  • 프로테오믹스는 생물체 안에 포함되어 있는 단백질을 통합적으로 연구한다. 단백질을 동정(Protein identification)하고, 단백질의 상태를 분석(Protein characterization)하며, 단백질의 양적 변화를 관찰(Protein quantitation)한다. 단백질에 대한 분석, 특히 질량분석기에 의해 초고속으로 대량의 단백질 데이터를 생산하는 프테테오믹스의 연구는 정량적인 단백질 발현양상분석의 정확도를 높이고 분석시간을 단축하기 위해 다양한 실험기법과 데이터 분석기법을 동원하고 있다. 1) 단백질의 양적 차이나 양적 변화의 관찰은 바이오마커를 발굴하고 생명현상의 메카니즘을 규명하여 그 결과를 신약개발에 활용하기 위한 기초 연구이다. 이 글에서는 프로테오믹스 연구의 초창기부터 사용되어온 2차원 전기영동법에 의해 생성되는 2D-gel image에서의 스팟(spot)분석법과 함께, 탄뎀 질량분석기를 사용하는 ICAT, SILAC 등의 동위 원소를 사용한 라벨링(labeling) 방법, 라벨링을 하지 않는 label-free 방법 등 프로테오믹스에서의 정량분석법에 대한 기본 개념을 살펴보고, 이들에서의 데이터 분석 기술의 적용에 대해 간략히 소개하였다.

  • PDF

Background Subtraction for Moving Cameras based on trajectory-controlled segmentation and Label Inference

  • Yin, Xiaoqing;Wang, Bin;Li, Weili;Liu, Yu;Zhang, Maojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권10호
    • /
    • pp.4092-4107
    • /
    • 2015
  • We propose a background subtraction method for moving cameras based on trajectory classification, image segmentation and label inference. In the trajectory classification process, PCA-based outlier detection strategy is used to remove the outliers in the foreground trajectories. Combining optical flow trajectory with watershed algorithm, we propose a trajectory-controlled watershed segmentation algorithm which effectively improves the edge-preserving performance and prevents the over-smooth problem. Finally, label inference based on Markov Random field is conducted for labeling the unlabeled pixels. Experimental results on the motionseg database demonstrate the promising performance of the proposed approach compared with other competing methods.

제지공정의 실시간 결함 검출을 위한 영상 기반 웹 검사 시스템 (A Video based Web Inspection System for Real-time Detection of Paper Defects during Papermaking Processes)

  • 한종우;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제9권2호
    • /
    • pp.79-85
    • /
    • 2010
  • In this paper, we propose a web inspection system (WIS) for real-time detection of paper defects which can cause critical fractures during papermaking process. Our system incorporates high speed line-scan camera, lighting system, and detection algorithm to provide robust and precise detection of paper defects in real-time. Since edge defects are very crucial to the paper fractures, our system focuses on the edge region of the paper instead of inspecting the whole paper area. In our algorithm, image projection and sub-pixel operation are utilized to detect the edge defects precisely and connected component labeling and shape analysis techniques are adopted to extract various kinds of the region defects. Experimental results revealed that our web inspection system is very efficient for detecting paper defects during papermaking processes.

적응형 헤드 램프 컨트롤을 위한 야간 차량 인식 (Vehicle Detection for Adaptive Head-Lamp Control of Night Vision System)

  • 김현구;정호열;박주현
    • 대한임베디드공학회논문지
    • /
    • 제6권1호
    • /
    • pp.8-15
    • /
    • 2011
  • This paper presents an effective method for detecting vehicles in front of the camera-assisted car during nighttime driving. The proposed method detects vehicles based on detecting vehicle headlights and taillights using techniques of image segmentation and clustering. First, in order to effectively extract spotlight of interest, a pre-signal-processing process based on camera lens filter and labeling method is applied on road-scene images. Second, to spatial clustering vehicle of detecting lamps, a grouping process use light tracking method and locating vehicle lighting patterns. For simulation, we are implemented through Da-vinci 7437 DSP board with visible light mono-camera and tested it in urban and rural roads. Through the test, classification performances are above 89% of precision rate and 94% of recall rate evaluated on real-time environment.

Unsupervised Learning-Based Pipe Leak Detection using Deep Auto-Encoder

  • Yeo, Doyeob;Bae, Ji-Hoon;Lee, Jae-Cheol
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권9호
    • /
    • pp.21-27
    • /
    • 2019
  • In this paper, we propose a deep auto-encoder-based pipe leak detection (PLD) technique from time-series acoustic data collected by microphone sensor nodes. The key idea of the proposed technique is to learn representative features of the leak-free state using leak-free time-series acoustic data and the deep auto-encoder. The proposed technique can be used to create a PLD model that detects leaks in the pipeline in an unsupervised learning manner. This means that we only use leak-free data without labeling while training the deep auto-encoder. In addition, when compared to the previous supervised learning-based PLD method that uses image features, this technique does not require complex preprocessing of time-series acoustic data owing to the unsupervised feature extraction scheme. The experimental results show that the proposed PLD method using the deep auto-encoder can provide reliable PLD accuracy even considering unsupervised learning-based feature extraction.

딥러닝 기반 민화 장르 분류 모델 연구 (A Study on the Classification Model of Minhwa Genre Based on Deep Learning)

  • 윤수림;이영숙
    • 한국멀티미디어학회논문지
    • /
    • 제25권10호
    • /
    • pp.1524-1534
    • /
    • 2022
  • This study proposes the classification model of Minhwa genre based on object detection of deep learning. To detect unique Korean traditional objects in Minhwa, we construct custom datasets by labeling images using object keywords in Minhwa DB. We train YOLOv5 models with custom datasets, and classify images using predicted object labels result, the output of model training. The algorithm consists of two classification steps: 1) according to the painting technique and 2) genre of Minhwa. Through classifying paintings using this algorithm on the Internet, it is expected that the correct information of Minhwa can be built and provided to users forward.

IVUS 영상에서 베지어 곡선을 이용한 내막과 외막 추출 (Extraction of Intima and Adventitia using Bezier Curve on IVUS Image)

  • 문아성;김영완;강용훈;김광백
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제61차 동계학술대회논문집 28권1호
    • /
    • pp.29-31
    • /
    • 2020
  • 제안된 방법은 외막의 경계선을 추출하기 위해 Max-Min 이진화를 적용하여 외막을 추출 한 후에 삼각 함수의 각도 값을 이용하여 외막의 경계점을 추출한다. 추출한 경계점들을 Bezier Curve 기법을 적용하여 외막의 경계점들을 연결하여 외막의 경계선을 추출한다. 그리고 내막 영역을 추출하기 위해 외막 영역을 ROI 영역으로 추출한다. 추출된 ROI 영역을 오목 파라볼라 기법을 적용하여 내막의 영역을 강조한다. 내막영역이 강조된 ROI 영역에 평균 이진화를 적용하여 내막의 영역을 추출한다. 추출된 영역에서 잡음을 제거하기 위해 내막 영역만 Labeling 기법을 적용한다. 제안된 방법을 IVUS 영상을 대상으로 실험한 결과, 내막과 외막간의 포함관계의 정도에 따라 환자의 수술 여부 결정에 대한 외막과 내막의 각 넓이 정보를 개관적으로 제공할 수 있는 가능성을 확인하였다.

  • PDF

CNN기반 알츠하이머 치매 중증도 판별 알고리즘 오차 검증 (Convolutional Neural Network-based Iris Lesion Classification Algorithm)

  • 김준겸;서진범;조영복
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.100-101
    • /
    • 2021
  • 고령 사회에 들어선 한국은 노인 인구의 87%가 치매, 중풍 등 만성질환을 앓고 있으며 이중 알츠하이머 치매는 전체 치매의 71.3%를 차지할 정도로 치매 중 높은 비율로 나타난다. 본 논문은 알츠하이머 치매 MRI 이미지를 3단계로 나눈 딥러닝 결과의 오차 문제를 검토하기 위해 라벨링 검증을 하였다.

  • PDF