Image-generated AI is rapidly emerging as a powerful tool to augment human creativity and transform the art and design process through deep learning capabilities. The purpose of this study was to propose and demonstrate the feasibility of a new design development method that combined traditional design methods and technology by constructing image-generated AI prompts based on artists' formative elements. The study methodology consisted of analyzing Kazmir Malevich's theoretical considerations and applying them to AI prompts for design, print pattern development, and 3D digital design. This study found that the suprematist works of Kazmir Malevich were suitable as design and print pattern prompts due to their clear geometric shapes, colors, and spatial arrangement. The AI-prompted designs and print patterns produced diverse results quickly and enabled an efficient design process compared to traditional methods, although additional refinement was required to perfect the details. The AI-generated designs were successfully produced as 3D garments, thereby demonstrating that AI technology could significantly contribute to fashion design through its integration with artistic principles. This study has academic significance in that it proposes a prompt composition method applicable to fashion design by combining AI and artistic elements. It also has industrial significance in that it contributes to design innovation and the implementation of creative ideas by presenting an AI-based design process that can be practically applied.
본 연구는 최근에 활발히 연구되고 있는 딥러닝 기술인 생성적 적대 신경망(GAN)을 핵의학 영상에 적용하여 잠재적으로 유용성이 있는지 확인해보고자 하였다. 본원에서 18F-FDG Brain PET/CT검사를 진행한 30명의 환자를 대상으로 하였고 List모드로 15분 검사한 후 이를 1, 2, 3, 4, 5분 초기획득시간 이미지로 재구성하였다. 이 중 25명의 환자를 GAN모델의 학습을 위한 트레이닝 이미지로 사용하고 5명의 환자를 학습된 GAN모델의 검증을 위한 테스트 이미지로 사용하였다. 학습된 GAN모델에 입력으로 1, 2, 3, 4, 5분의 초기획득 이미지를 넣고 출력으로 15분 인공지능 표준획득 이미지를 획득한 후 이를 기존의 15분 표준획득시간 검사 이미지와 비교 평가하였다. 평가에는 정량화된 이미지 평가방법인 평균제곱오차, 최대신호 대 잡음비, 구조적 유사도 지수를 이용하였다. 평가 결과 초기획득시간 이미지에서 1에서 5분으로 갈수록 실제 표준획득시간 이미지에 가까운 평균제곱오차, 최대신호 대 잡음비, 구조적 유사도 지수 수치를 나타내었다. 이러한 연구를 통해 앞으로 인공지능 기술이 핵의학 분야에서 의료영상의 획득시간 단축과 관련하여 중요한 영향을 미칠 수 있을 것으로 사료된다.
International journal of advanced smart convergence
/
제12권2호
/
pp.84-89
/
2023
In recent years, with the breakthrough of Artificial Intelligence (AI) technology in deep learning algorithms such as Generative Adversarial Networks (GANs) and Variational Autoencoders (VAE), AI generation technology has rapidly expanded in various sub-sectors in the art field. 2022 as the explosive year of AI-generated art, especially in the creation of AI-generated art creative design, many excellent works have been born, which has improved the work efficiency of art design. This study analyzed the application design characteristics of AI generation technology in two sub fields of artistic creative design of AI painting and AI animation production , and compares the differences between traditional painting and AI painting in the field of painting. Through the research of this paper, the advantages and problems in the process of AI creative design are summarized. Although AI art designs are affected by technical limitations, there are still flaws in artworks and practical problems such as copyright and income, but it provides a strong technical guarantee in the expansion of subdivisions of artistic innovation and technology integration, and has extremely high research value.
오프라인에서 사진을 촬영하는 포토부스는 자신이 원하는 포즈와 소품 등을 통해 자연스럽게 나다운 모습을 촬영할 수 있으며, 함께한 사람들과 추억을 공유하는 특별한 경험을 선사한다. 최근 다양한 표현을 가능하게 하고자 생성형 AI를 활용한 포토부스 사례들이 등장했다. 그러나 기존 AI 포토부스는 단체 사진 촬영이 불가능하고, 대부분 사용자의 포즈를 반영하지 못하며, 개별 인물마다 다른 컨셉을 적용하기 어려운 한계가 존재한다. 본 연구는 이러한 문제를 해결하여 사용자가 자유롭게 포즈와 위치, 컨셉을 선택하여 촬영할 수 있는 AI 포토부스 시네마픽을 제안한다. 인물별 개별 컨셉 적용을 위해 개별 생성 워크플로우를 전처리, 생성, 후처리 세 단계로 설계하고, 이를 실제 프로토타입으로 구현했다. 이 과정에서 인물별 투명 이미지 생성, 배경 생성 후 합성시 발생하는 아티팩트를 줄이는 재생성 테크닉, 최적화 모델 적용 및 GPU 병렬화 등 다양한 방식을 워크플로우에 통합하여 한계점을 극복하였다. 사용자 품질 평가와 약 400명의 사용자를 대상으로 대규모 시범 운영을 통해 시스템의 효과성을 검증했다. 그 결과, 사용자들은 기존 방식에 비해 높은 선호도를 보였으며, 이를 통해 실제 포토부스로의 도입 가능성을 확인했다. 본 연구에서 제안하는 AI 포토부스 시네마픽은 더욱 창의적이고 차별화된 시장을 개척할 수 있을 것으로 기대하며, 앞으로 다양한 응용 분야에서 널리 활용될 것으로 기대된다.
ChatGPT와 같은 생성형 AI는 21세기의 인간과 기계 간 상호작용에 새로운 패러다임을 제시했다. 이러한 기술의 발전이 다양한 분야에 빠르게 퍼져나가면서, AI와 꽤 멀리 떨어져 있다고 생각되었던 예술 분야에서도 AI가 어떤 역할을 할 수 있는지에 대한 연구가 활발히 진행되고 있다. 이에 본 연구는 제 4차 산업혁명의 시대에 시각예술 교육에서 생성형 AI의 활용 가능성을 탐구하고자 한다. 경북에 위치한 4년제 대학에서 진행된 실증연구는 창의적 융합모듈 수업에 참여한 70명의 학생들을 중심으로, AI와 시각예술 분야에서 협업의 영향, 그 중에서도 전공, 학년, 성별에 따른 차이점을 분석했다. 결과적으로, AI와 함께하는 시각예술 창작 활동이 학생들의 창의성과 디지털 미디어 리터러시에 긍정적인 영향을 미치는 것을 확인하며, 이를 기반으로 더욱 효과적인 교육 전략과 방향 모색에 관해 제언한다.
The emergence of generative hyperscale artificial intelligence (AI) has enabled new services, such as image-generating AI and conversational AI based on large language models. Such services likely lead to the influx of numerous users, who cannot be handled using conventional AI models. Furthermore, the exponential increase in training data, computations, and high user demand of AI models has led to intensive hardware resource consumption, highlighting the need to develop domain-specific semiconductors for hyperscale AI. In this technical report, we describe development trends in technologies for hyperscale AI processors pursued by domestic and foreign semiconductor companies, such as NVIDIA, Graphcore, Tesla, Google, Meta, SAPEON, FuriosaAI, and Rebellions.
GAN (Generative Adversarial Networks) creates highly sophisticated counterfeit products by learning real images or text and inferring commonalities. Therefore, it can be useful in fields that require the creation of large-scale images or graphics. In this paper, we implement GAN-based game character creation AI that can dramatically reduce illustration design work costs by providing expansion and automation of game character image creation. This is very efficient in game development as it allows mass production of various character images at low cost.
Hyuntae Kim;Ji Hoon Kong;Hyun Seung Son;R. Young Chul Kim
International journal of advanced smart convergence
/
제13권1호
/
pp.99-107
/
2024
In AI image generation tools, most general users must use an effective prompt to craft queries or statements to elicit the desired response (image, result) from the AI model. But we are software engineers who focus on software processes. At the process's early stage, we use informal and formal requirement specifications. At this time, we adapt the natural language approach into requirement engineering and toon engineering. Most Generative AI tools do not produce the same image in the same query. The reason is that the same data asset is not used for the same query. To solve this problem, we intend to use informal requirement engineering and linguistics to create a toon. Therefore, we propose a sequence diagram and image generation mechanism by analyzing and applying key objects and attributes as an informal natural language requirement analysis. Identify morpheme and semantic roles by analyzing natural language through linguistic methods. Based on the analysis results, a sequence diagram and an image are generated through the diagram. We expect consistent image generation using the same image element asset through the proposed mechanism.
AI(Artificial Intelligence)의 다양한 모델 중 생성 모델, 특히 GAN(Generative Adversarial Network)은 이미지 처리, 밀도 추정, 스타일 전이 등 다양한 응용 분야에서 성공을 거두었다. 이러한 GAN은 CGAN(Conditional GAN), CycleGAN, BigGAN 등의 방식으로 확장 및 개선되었지만 재난 시뮬레이션, 의료 분야, 도시 계획 등 특정 분야에서는 데이터 부족과 불안정한 학습에 의한 이미지 왜곡 문제로 실제 시스템 적용에 문제가 되고 있다. 본 논문에서는 클래스 항목을 판별하는 ACGAN(Auxiliary Classifier GAN) 구조를 기반으로 기존 PGGAN(Progressive Growing of GAN)의 점진적 학습 방식을 활용한 새로운 점진적 단계의 학습 방법론 PST(Progressive Step Training)를 제안한다. PST 모델은 기존 방법 대비 70.82% 빠른 안정화, 51.3% 낮은 표준 편차, 후반 고해상도의 안정적 손실값 수렴 그리고 94.6% 빠른 손실 감소를 달성한다.
자동차 타이어의 휠과 트레드 사이에 탄성중합체 또는 다각형의 스포크를 채우는 방식으로 제작하는 비공기압 타이어는 자동차 관련 학계 및 항공우주 업계의 중요한 연구 주제가 되고 있다. 본 연구에서는 생성형 적대 신경망을 기반으로 비공기압 타이어 디자인을 생성하는 시스템 개발했다. 특히 비공기압 타이어의 종류와 사용 환경, 제작 방식, 공기압 타이어와의 차이점 그리고 스포크 디자인에 따른 하중 전달의 변화 등 디자인에 영향을 미칠만한 변수들에 대한 조사를 실시했다. 이 연구는 OpenCV를 통해 다양한 스포크 형태의 이미지를 만들고, projected GANs에 학습시켜 비공기압 타이어 디자인에 사용될 스포크를 생성했다. 디자인된 비공기압 타이어는 사용 가능 및 불가능으로 레이블링하고, 이를 Vision Transformer 이미지 분류 AI 모델에 학습시켜 분류하도록 하였다. 최종적으로 분류 모델의 평가를 통해 0에 가까운 loss의 수렴, 99%의 정확도를 확인했다. 차후 도형 및 스포크 이미지와 알고리즘을 이용한 디자인이 아닌, 완전 자동화 시스템의 개발과 더 나아가 3D의 물리적 해석 없이 사용 가능한 디자인을 생성하는 것을 목표로 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.