• Title/Summary/Keyword: Image Focal Plane

Search Result 111, Processing Time 0.028 seconds

Real-Time Fixed Pattern Noise Suppression using Hardware Neural Networks in Infrared Images Based on DSP & FPGA (DSP & FPGA 기반의 적외선 영상에서 하드웨어 뉴럴 네트워크를 이용한 실시간 고정패턴잡음 제어)

  • Park, Chang-Han;Han, Jung-Soo;Chun, Seung-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.94-101
    • /
    • 2009
  • In this paper, we propose design of hardware based on a high speed digital signal processor (DSP) and a field programmable gate array (FPGA) for real-time suppression of fixed pattern noise (FPN) using hardware neural networks (HNN) in cooled infrared focal plane array (IRFPA) imaging system FPN appears a limited operation by temperature in observable images which applies to non-uniformity correction for infrared detector. These have very important problems because it happen serious problem for other applications as well as degradation for image quality in our system Signal processing architecture for our system operates reference gain and offset values using three tables for low, normal, and high temperatures. Proposed method creates virtual tables to separate for overlapping region in three offset tables. We also choose an optimum tenn of temperature which controls weighted values of HNN using mean values of pixels in three regions. This operates gain and offset tables for low, normal, and high temperatures from mean values of pixels and it recursively don't have to do an offset compensation in operation of our system Based on experimental results, proposed method showed improved quality of image which suppressed FPN by change of temperature distribution from an observational image in real-time system.

The Analysis on the relation between the Compression Method and the Performance of MSC(Multi-Spectral Camera) Image data

  • Yong, Sang-Soon;Choi, Myung-Jin;Ra, Sung-Woong
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.530-532
    • /
    • 2007
  • Multi-Spectral Camera(MSC) is a main payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The MSC instrument has one(1) channel for panchromatic imaging and four(4) channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI CCD Focal Plane Array (FPA). The compression method on KOMPSAT-2 MSC was selected and used to match EOS input rate and PDTS output data rate on MSC image data chain. At once the MSC performance was carefully handled to minimize any degradation so that it was analyzed and restored in KGS(KOMPSAT Ground Station) during LEOP and Cal./Val.(Calibration and Validation) phase. In this paper, on-orbit image data chain in MSC and image data processing on KGS including general MSC description is briefly described. The influences on image performance between on-board compression algorithms and between performance restoration methods in ground station are analyzed and discussed.

  • PDF

A New Profilometry System for Precision Measurement of 3D Shape Using the Directional Magnification Control of a Laser Light Stripe (선모양을 한 레이저빔의 방향성 배율 확대를 이용한 정밀 형상측정 시스템)

  • Park, Seung-Kyu;Baik, Sung-Hoon;KIM, Cheol-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.60-65
    • /
    • 1997
  • This paper proposes a profilometry system for precise surface contouring of 3D objects using a direc- tionally magnified image of a laser light stripe. The resolution of this system can be improved several times comparad with that of conventional systems without loss of spatial resolution and depth of measurement. A pair of cylindrical lens(a convex lens and a concave lens) are used for a directionally magnified image of a laser light stripe maintaining the same focal plane. Also, image processing procedures for image reconstruc- tions are described.

  • PDF

Analytical Techniques For Use With Frame Photography (일반(一般) 카메라에 의한 위치결정의 해석적(解析的) 기법(技法)에 관한 연구)

  • Yang, In-Tae
    • Journal of Industrial Technology
    • /
    • v.5
    • /
    • pp.3-7
    • /
    • 1985
  • Analytical techniques for use with reconnaissance frame photographs are outlined. The first approach is a point-by-point space resection in which the dynamic properties of the camera are taken into account. In the second approach appropriate parameters are added to correct for image distoritions, caused by the focal plane shutter, during the space resection phase. Test results showed that the analytical techniques developed will significantly improve the planimetric and height accuracy obtained by conventional methods.

  • PDF

High resolution 3D display using time-multiplexed overlapped projection

  • Baasantseren, Ganbat;Park, Jae-Hyeung;Kim, Nam
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1338-1340
    • /
    • 2009
  • High resolution three-dimensional integral imaging display is proposed. Each time-multiplexed image is projected with different incident angle on same array of elemental lenses. Those images are collected at different positions in focal plane of lens array, and thus the number of the point light sources increases and their spacing decreases. Therefore, proposed method can create high resolution 3D images.

  • PDF

Parametric Analysis of Digital Particle Holography for Spray Droplets (분무 액적을 위한 디지털 입자 홀로그래피의 파라미터 해석)

  • Yang, Yan;Kang, Bo-Seon
    • Journal of ILASS-Korea
    • /
    • v.12 no.4
    • /
    • pp.191-197
    • /
    • 2007
  • This study presents in-line digital particle holography and its application to spray droplets to measure the characteristics of spray droplets. Several important parameters at the time of hologram recording such as the object distance and the region of laser beam used were verified. The correlation coefficient method with important parameters such as the reconstruction interval and the correlation interval was used for determination of the focal planes of particles. The optimal values of all these parameters are obtained by either numerical simulation of holograms or experiments. Using these optimal parameters, double pulse digital spray holograms in a short time interval were recorded with the synchronization system for the time control. The spatial positions of droplets that are used for the evaluation of the three dimensional droplet velocities can be easily located, which proves the feasibility of the digital holographic technology for measurements of several important features of spray droplets.

  • PDF

Spatial Characterization of MAC, a High-Resolution Optical Earth Observation Camera for Small Satellites

  • Kim Eugene D.;Choi Young-Wan;Yang Ho-Soon;Ismail Mohd. Afiq bin
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.79-83
    • /
    • 2005
  • Spatial calibrations have been performed on the Medium-sized Aperture Camera (MAC) of the RazakSAT satellite. Topics discussed in this paper include the measurements of system modulation transfer function (MTF), relative pixel line-of-sight (LOS), and end-to-end imaging tests. The MTF measurements were made by capturing the scanned knife-edge image on a pixel, and an issue in the MTF calculation algorithm is discussed. The method used to place the focal plane at the correct focal position is described, since they make use of MTF measurements. Relative LOS measurements are done by theodolite measurements of the telescope. Qualitative ground test result of end-to-end imaging is given.

Real Time Image Processing of Thermal Imaging System (열상장비의 실시간 영상 신호처리)

  • Hong Seok Min;Yu Wee Kyung;Yoon Eun Suk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.4 s.19
    • /
    • pp.79-86
    • /
    • 2004
  • This paper has presented to the design results of the analog and digital signal processor for the 2nd generation thermal imaging system using $480\times6$ infrared focal plane array In order to correct non-uniformities of detector arrays, we have developed the 2-point correction method using the thermo electric cooler. Additionally, to enhance the image of low contrast and improve the detection capability, we developed the new technique of histogram processing being suitable for the characteristics of contrast distribution of thermal imagery. Through these image processing techniques, we obtained a high qualify thermal image and acquired good result.

On the Measurement of the Depth and Distance from the Defocused Imagesusing the Regularization Method (비초점화 영상에서 정칙화법을 이용한 깊이 및 거리 계측)

  • 차국찬;김종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.6
    • /
    • pp.886-898
    • /
    • 1995
  • One of the ways to measure the distance in the computer vision is to use the focus and defocus. There are two methods in this way. The first method is caculating the distance from the focused images in a point (MMDFP: the method measuring the distance to the focal plane). The second method is to measure the distance from the difference of the camera parameters, in other words, the apertures of the focal planes, of two images with having the different parameters (MMDCI: the method to measure the distance by comparing two images). The problem of the existing methods in MMDFP is to decide the thresholding vaue on detecting the most optimally focused object in the defocused image. In this case, it could be solved by comparing only the error energy in 3x3 window between two images. In MMDCI, the difficulty is the influence of the deflection effect. Therefor, to minimize its influence, we utilize two differently focused images instead of different aperture images in this paper. At the first, the amount of defocusing between two images is measured through the introduction of regularization and then the distance from the camera to the objects is caculated by the new equation measuring the distance. In the results of simulation, we see the fact to be able to measure the distance from two differently defocused images, and for our approach to be robuster than the method using the different aperture in the noisy image.

  • PDF

A Study on Adaptable Non-contact Shape Inspection System (적응형 비접촉 형상 검사에 관한 연구)

  • Kang, Young-June;Park, Nak-Gyu;Lee, Dong-Hwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.74-80
    • /
    • 2005
  • A new dimension measuring method for the measurement of diameter of an object has been developed using laser triangulation. The 3D data of an object was calculated from the 2 dimensional image information obtained by the laser stripe using the laser triangulation. The system that use existing theory can measure the diameter of hole not only in a normal plane but also ill an incline plane. However, in the existing theory, since the lens with fixed feral length was used, the area of measurement was fixed. The simplest way to solve this problem is to change distance between a CCD camera and object. Other way is to use a zoom lens having variable focal length. In this paper, the zoom lens with variable focal length was used. Therefore, we ran experiment with magnification that is optimized according to size of object using zoom lens with variable focal length.