• Title/Summary/Keyword: Image Features

Search Result 3,382, Processing Time 0.029 seconds

Harmful Image Detection Method Using Skin and Non-Skin Features (피부 특징과 비 피부 특징을 이용한 유해 이미지 탐지 방법)

  • Jun, Jae-Hyun;Jung, Min-Suk;Jang, Yong-Suk;Ahn, Cheol-Woong;Kim, Sung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.55-61
    • /
    • 2015
  • Today, IT technology provide convenience to many people. Smartphone era is opened, and market environment is changing rapidly. Pornography market is active by using smartphone use free internet. Many people access mobile harmful site of USA and Japan. App store of the apple has been cut off the porn service, but access block to mobile Web page is an impossible situation. In this paper, we proposed the harmful image detection method of using skin and non skin features to detect harmful image. Our proposed method can provide enough performance than previous method.

A Sparse Target Matrix Generation Based Unsupervised Feature Learning Algorithm for Image Classification

  • Zhao, Dan;Guo, Baolong;Yan, Yunyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2806-2825
    • /
    • 2018
  • Unsupervised learning has shown good performance on image, video and audio classification tasks, and much progress has been made so far. It studies how systems can learn to represent particular input patterns in a way that reflects the statistical structure of the overall collection of input patterns. Many promising deep learning systems are commonly trained by the greedy layerwise unsupervised learning manner. The performance of these deep learning architectures benefits from the unsupervised learning ability to disentangling the abstractions and picking out the useful features. However, the existing unsupervised learning algorithms are often difficult to train partly because of the requirement of extensive hyperparameters. The tuning of these hyperparameters is a laborious task that requires expert knowledge, rules of thumb or extensive search. In this paper, we propose a simple and effective unsupervised feature learning algorithm for image classification, which exploits an explicit optimizing way for population and lifetime sparsity. Firstly, a sparse target matrix is built by the competitive rules. Then, the sparse features are optimized by means of minimizing the Euclidean norm ($L_2$) error between the sparse target and the competitive layer outputs. Finally, a classifier is trained using the obtained sparse features. Experimental results show that the proposed method achieves good performance for image classification, and provides discriminative features that generalize well.

RECOGNITION ALGORITHM OF DRIED OAK MUSHROOM GRADINGS USING GRAY LEVEL IMAGES

  • Lee, C.H.;Hwang, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.773-779
    • /
    • 1996
  • Dried oak mushroom have complex and various visual features. Grading and sorting of dried oak mushrooms has been done by the human expert. Though actions involved in human grading looked simple, a decision making underneath the simple action comes from the result of the complex neural processing of the visual image. Through processing details involved in human visual recognition has not been fully investigated yet, it might say human can recognize objects via one of three ways such as extracting specific features or just image itself without extracting those features or in a combined manner. In most cases, extracting some special quantitative features from the camera image requires complex algorithms and processing of the gray level image requires the heavy computing load. This fact can be worse especially in dealing with nonuniform, irregular and fuzzy shaped agricultural products, resulting in poor performance because of the sensitiveness to the crisp criteria or specific ules set up by algorithms. Also restriction of the real time processing often forces to use binary segmentation but in that case some important information of the object can be lost. In this paper, the neuro net based real time recognition algorithm was proposed without extracting any visual feature but using only the directly captured raw gray images. Specially formated adaptable size of grids was proposed for the network input. The compensation of illumination was also done to accomodate the variable lighting environment. The proposed grading scheme showed very successful results.

  • PDF

Blind Quality Metric via Measurement of Contrast, Texture, and Colour in Night-Time Scenario

  • Xiao, Shuyan;Tao, Weige;Wang, Yu;Jiang, Ye;Qian, Minqian.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4043-4064
    • /
    • 2021
  • Night-time image quality evaluation is an urgent requirement in visual inspection. The lighting environment of night-time results in low brightness, low contrast, loss of detailed information, and colour dissonance of image, which remains a daunting task of delicately evaluating the image quality at night. A new blind quality assessment metric is presented for realistic night-time scenario through a comprehensive consideration of contrast, texture, and colour in this article. To be specific, image blocks' color-gray-difference (CGD) histogram that represents contrast features is computed at first. Next, texture features that are measured by the mean subtracted contrast normalized (MSCN)-weighted local binary pattern (LBP) histogram are calculated. Then statistical features in Lαβ colour space are detected. Finally, the quality prediction model is conducted by the support vector regression (SVR) based on extracted contrast, texture, and colour features. Experiments conducted on NNID, CCRIQ, LIVE-CH, and CID2013 databases indicate that the proposed metric is superior to the compared BIQA metrics.

Selective Feature Extraction Method Between Markov Transition Probability and Co-occurrence Probability for Image Splicing Detection (접합 영상 검출을 위한 마르코프 천이 확률 및 동시발생 확률에 대한 선택적 특징 추출 방법)

  • Han, Jong-Goo;Eom, Il-Kyu;Moon, Yong-Ho;Ha, Seok-Wun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.833-839
    • /
    • 2016
  • In this paper, we propose a selective feature extraction algorithm between Markov transition probability and co-occurrence probability for an effective image splicing detection. The Features used in our method are composed of the difference values between DCT coefficients in the adjacent blocks and the value of Kullback-Leibler divergence(KLD) is calculated to evaluate the differences between the distribution of original image features and spliced image features. KLD value is an efficient measure for selecting Markov feature or Co-occurrence feature because KLD shows non-similarity of the two distributions. After training the extracted feature vectors using the SVM classifier, we determine whether the presence of the image splicing forgery. To verify our algorithm we used grid search and 6-folds cross-validation. Based on the experimental results it shows that the proposed method has good detection performance with a limited number of features compared to conventional methods.

Similarity Measurement using Gabor Energy Feature and Mutual Information for Image Registration

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.693-701
    • /
    • 2011
  • Image registration is an essential process to analyze the time series of satellite images for the purpose of image fusion and change detection. The Mutual Information (MI) is commonly used as similarity measure for image registration because of its robustness to noise. Due to the radiometric differences, it is not easy to apply MI to multi-temporal satellite images using directly the pixel intensity. Image features for MI are more abundantly obtained by employing a Gabor filter which varies adaptively with the filter characteristics such as filter size, frequency and orientation for each pixel. In this paper we employed Bidirectional Gabor Filter Energy (BGFE) defined by Gabor filter features and applied the BGFE to similarity measure calculation as an image feature for MI. The experiment results show that the proposed method is more robust than the conventional MI method combined with intensity or gradient magnitude.

An Object-Level Feature Representation Model for the Multi-target Retrieval of Remote Sensing Images

  • Zeng, Zhi;Du, Zhenhong;Liu, Renyi
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.2
    • /
    • pp.65-77
    • /
    • 2014
  • To address the problem of multi-target retrieval (MTR) of remote sensing images, this study proposes a new object-level feature representation model. The model provides an enhanced application image representation that improves the efficiency of MTR. Generating the model in our scheme includes processes, such as object-oriented image segmentation, feature parameter calculation, and symbolic image database construction. The proposed model uses the spatial representation method of the extended nine-direction lower-triangular (9DLT) matrix to combine spatial relationships among objects, and organizes the image features according to MPEG-7 standards. A similarity metric method is proposed that improves the precision of similarity retrieval. Our method provides a trade-off strategy that supports flexible matching on the target features, or the spatial relationship between the query target and the image database. We implement this retrieval framework on a dataset of remote sensing images. Experimental results show that the proposed model achieves competitive and high-retrieval precision.

PATN: Polarized Attention based Transformer Network for Multi-focus image fusion

  • Pan Wu;Zhen Hua;Jinjiang Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1234-1257
    • /
    • 2023
  • In this paper, we propose a framework for multi-focus image fusion called PATN. In our approach, by aggregating deep features extracted based on the U-type Transformer mechanism and shallow features extracted using the PSA module, we make PATN feed both long-range image texture information and focus on local detail information of the image. Meanwhile, the edge-preserving information value of the fused image is enhanced using a dense residual block containing the Sobel gradient operator, and three loss functions are introduced to retain more source image texture information. PATN is compared with 17 more advanced MFIF methods on three datasets to verify the effectiveness and robustness of PATN.

Image Retrieval Using the Fusion of Spatial Histogram and Wavelet Moments (공간 히스토그램과 웨이브릿 모멘트의 융합에 의한 영상검색)

  • 서상용;손재곤;김남철
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.11-14
    • /
    • 2000
  • We present an image retrieval method that improves retrieval rate by using the fusion of histogram and wavelet moment features. The key idea is that images similar to a query image are selected in DB by using the wavelet moment features. Then the result images are retrieved from the selected images by using histogram method. In order to evaluate the performance of the proposed method, we use Brodatz texture database, MPEG-7 T1 database and Corel Draw photo. Experimental result shows that the proposed method is better than each of histogram method and wavelet moment method.

  • PDF

The Pattern Recognition System Using the Fractal Dimension of Chaos Theory

  • Shon, Young-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.121-125
    • /
    • 2015
  • In this paper, we propose a method that extracts features from character patterns using the fractal dimension of chaos theory. The input character pattern image is converted into time-series data. Then, using the modified Henon system suggested in this paper, it determines the last features of the character pattern image after calculating the box-counting dimension, natural measure, information bit, and information (fractal) dimension. Finally, character pattern recognition is performed by statistically finding each information bit that shows the minimum difference compared with a normalized character pattern database.