• Title/Summary/Keyword: Image Extrapolation

Search Result 36, Processing Time 0.024 seconds

Effective Exemplar-Based Image Inpainting Using Patch Extrapolation (패치 외삽을 이용한 효과적인 예제기반 영상 인페인팅)

  • Kim, Jin-Ju;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2014
  • Image inpainting is the widely used technique to restore a damaged region or to fill a hole in an image. The exemplar-based technique effectively generates new texture by copying colour values of the most correlated patch in the source into the empty region of the current patch. In traditional exemplar-based synthesis, the patch correlation is computed using only the already filled pixels of the current patch. Thus, by ignoring the correlation between the hole regions of the two patches, an undesirable patch which is highly correlated with the current patch in the already filled area but considerably dissimilar in the area to be filled can be selected, which results in bad texture propagation. To avoid such problems, a new exemplar-based inpainting method using patch extrapolation is proposed. The empty part of the current patch is extrapolated beforehand, and then the complete patch is used for finding its exemplar. Experimental results show that the proposed method provides more natural synthesis results than the conventional ones.

Prestack Reverse Time Migration for Seismic Reflection data in Block 5, Jeju Basin (제주분지 제 5광구 탄성파자료의 중합전 역시간 구조보정)

  • Ko, Chin-Surk;Jang, Seong-Hyung
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.349-358
    • /
    • 2010
  • For imaging complex subsurface structures such as salt dome, faults, thrust belt, and folds, seismic prestack reverse-time migration in depth domain is widely used, which is performed by the cross-correlation of shot-domain wavefield extrapolation with receiver-domain wavefield extrapolation. We apply the prestack reverse-time migration, which had been developed at KIGAM, to the seismic field data set of Block 5 in Jeju basin of Korea continental shelf in order to improve subsurface syncline stratigraphy image of the deep structures under the shot point 8km at the surface. We performed basic data processing for improving S/N ratio in the shot gathers, and constructed a velocity model from stack velocity which was calculated by the iterative velocity spectrum. The syncline structure of the stack image appears as disconnected interfaces due to the diffractions, but the result of the prestack migration shows that the syncline image is improved as seismic energy is concentrated on the geological interfaces.

Improvement of KOMPSAT-5 Image Resolution for Target Analysis (객체 분석을 위한 KOMPSAT-5 영상의 해상도 향상 성능 분석)

  • Lee, Seung-Jae;Chae, Tae-Byeong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.275-281
    • /
    • 2019
  • A synthetic aperture radar(SAR) satellite is more effective than an optical satellite for target analysis because an SAR satellite can provide two-dimensional electromagnetic scattering distribution of a target during all-weather and day-and-night operations. To conduct target analysis while considering the earth observation interval of an SAR satellite, observing a specific area as wide as possible would be advantageous. However, wider the observation area, worse is the resolution of the associated SAR satellite image. Although conventional methods for improving the resolution of radar images can be employed for addressing this issue, few studies have been conducted for improving the resolution of SAR satellite images and analyzing the performance. Hence, in this study, the applicability of conventional methods to SAR satellite images is investigated. SAR target detection was first applied to Korea Multipurpose Satellite-5(KOMPSAT-5) SAR images provided by Korea Aerospace Research Institute for extracting target responses. Extrapolation, RELAX, and MUSIC algorithms were subsequently applied to the target responses for improving the resolution, and the corresponding performance was thereby analyzed.

Object Based Image Compression Using QP (Quadratic Programming) Method (QP(Quadratic Programming) 방법을 이용한 객체단위의 영상압축 알고리즘)

  • 최유태;이상엽;곽대호;김시내;송문호
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.175-178
    • /
    • 2000
  • The object level image compression is a useful technology for reducing the necessary data and manipulating individual objects. In this paper, we propose a new image object compression algorithm that uses the quadratic programming (QP) method to reduce the compressed data. The results indicate the superiority of the proposed QP based algorithm over the low pass extrapolation (LPE) method of MPEG-4.

  • PDF

Sensor Modeling of KOMPSAT-2 Satellite Using Strip Image (스트립 영상을 이용한 KOMPSAT-2 위성 센서모델링)

  • Kim, Sang-Pil;Son, Hong-Gyu;Jo, Gyeong-Hun;Choi, Kang-Jo;Yoo, Son-Han
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.217-219
    • /
    • 2010
  • Sensor modeling is the basic step to extract and to use the information from satellite images. Sensor modeling requires ground control points. If we use a single image, we have limitations on modeling about images captured from regions that we can not approach or take GCPs. In this research, we use strip images to do sensor modeling by two methods. At first, we apply sensor modeiling to single image and apply the results by extrapolation. Next, we consider strip images to single image. As a result, we find the second method is more accurate about whole image.

  • PDF

Digital Gray-Scale/Color Image-Segmentation Architecture for Cell-Network-Based Real-Time Applications

  • Koide, Tetsushi;Morimoto, Takashi;Harada, Youmei;Mattausch, Jurgen Hans
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.670-673
    • /
    • 2002
  • This paper proposes a digital algorithm for gray-scale/color image segmentation of real-time video signals and a cell-network-based implementation architecture in state-of-the-art CMOS technology. Through extrapolation of design and simulation results we predict that about 300$\times$300 pixels can be integrated on a chip at 100nm CMOS technology, realizing very high-speed segmentation at about 1600sec per color image. Consequently real-time color-video segmentation will become possible in near future.

  • PDF

Extra-phase Image Generation for Its Potential Use in Dose Evaluation for a Broad Range of Respiratory Motion

  • Lee, Hyun Su;Choi, Chansoo;Kim, Chan Hyeong;Han, Min Cheol;Yeom, Yeon Soo;Nguyen, Thang Tat;Kim, Seonghoon;Choi, Sang Hyoun;Lee, Soon Sung;Kim, Jina;Hwang, JinHo;Kang, Youngnam
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.3
    • /
    • pp.103-109
    • /
    • 2019
  • Background: Four-dimensional computed tomographic (4DCT) images are increasingly used in clinic with the growing need to account for the respiratory motion of the patient during radiation treatment. One of the reason s that makes the dose evaluation using 4DCT inaccurate is a change of the patient respiration during the treatment session, i.e., intrafractional uncertainty. Especially, when the amplitude of the patient respiration is greater than the respiration range during the 4DCT acquisition, such an organ motion from the larger respiration is difficult to be represented with the 4DCT. In this paper, the method to generate images expecting the organ motion from a respiration with extended amplitude was proposed and examined. Materials and Methods: We propose a method to generate extra-phase images from a given set of the 4DCT images using deformable image registration (DIR) and linear extrapolation. Deformation vector fields (DVF) are calculated from the given set of images, then extrapolated according to respiratory surrogate. The extra-phase images are generated by applying the extrapolated DVFs to the existing 4DCT images. The proposed method was tested with the 4DCT of a physical 4D phantom. Results and Discussion: The tumor position in the generated extra-phase image was in a good agreement with that in the gold-standard image which is separately acquired, using the same 4DCT machine, with a larger range of respiration. It was also found that we can generate the best quality extra-phase image by using the maximum inhalation phase (T0) and maximum exhalation phase (T50) images for extrapolation. Conclusion: In the present study, a method to construct extra-phase images that represent expanded respiratory motion of the patient has been proposed and tested. The movement of organs from a larger respiration amplitude can be predicted by the proposed method. We believe the method may be utilized for realistic simulation of radiation therapy.

Consider the directional hole filling method for virtual view point synthesis (가상 시점 영상 합성을 위한 방향성 고려 홀 채움 방법)

  • Mun, Ji Hun;Ho, Yo Sung
    • Smart Media Journal
    • /
    • v.3 no.4
    • /
    • pp.28-34
    • /
    • 2014
  • Recently the depth-image-based rendering (DIBR) method is usually used in 3D image application filed. Virtual view image is created by using a known view with associated depth map to make a virtual view point which did not taken by the camera. But, disocclusion area occur because the virtual view point is created using a depth image based image 3D warping. To remove those kind of disocclusion region, many hole filling methods are proposed until now. Constant color region searching, horizontal interpolation, horizontal extrapolation, and variational inpainting techniques are proposed as a hole filling methods. But when using those hole filling method some problem occurred. The different types of annoying artifacts are appear in texture region hole filling procedure. In this paper to solve those problem, the multi-directional extrapolation method is newly proposed for efficiency of expanded hole filling performance. The proposed method is efficient when performing hole filling which complex texture background region. Consideration of directionality for hole filling method use the hole neighbor texture pixel value when estimate the hole pixel value. We can check the proposed hole filling method can more efficiently fill the hole region which generated by virtual view synthesis result.

A Review on Deep Learning-based Image Outpainting (딥러닝 기반 이미지 아웃페인팅 기술의 현황 및 최신 동향)

  • Kim, Kyunghun;Kong, Kyeongbo;Kang, Suk-ju
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.61-69
    • /
    • 2021
  • Image outpainting is a very interesting problem in that it can continuously fill the outside of a given image by considering the context of the image. There are two main challenges in this work. The first is to maintain the spatial consistency of the content of the generated area and the original input. The second is to generate high quality large image with a small amount of adjacent information. Existing image outpainting methods have difficulties such as generating inconsistent, blurry, and repetitive pixels. However, thanks to the recent development of deep learning technology, deep learning-based algorithms that show high performance compared to existing traditional techniques have been introduced. Deep learning-based image outpainting has been actively researched with various networks proposed until now. In this paper, we would like to introduce the latest technology and trends in the field of outpainting. This study compared recent techniques by analyzing representative networks among deep learning-based outpainting algorithms and showed experimental results through various data sets and comparison methods.

Real-Time Haptic Rendering of Slowly Deformable Bodies Based on Two Dimensional Visual Information for Telemanipulation (원격조작을 위한 2차원 영상정보에 기반한 저속 변형체의 실시간 햅틱 렌더링)

  • Kim, Jung-Sik;Kim, Young-Jin;Kim, Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.855-861
    • /
    • 2007
  • Haptic rendering is a process providing force feedback during interactions between a user and a virtual object. This paper presents a real-time haptic rendering technique for deformable objects based on visual information of intervention between a tool and a real object in a remote place. A user can feel the artificial reaction force through a haptic device in real-time when a slave system exerts manipulation tasks on a deformable object. The models of the deformable object and the manipulator are created from the captured image obtained with a CCD camera and the recognition of objects is achieved using image processing techniques. The force at a rate of 1 kHz for stable haptic interaction is deduced using extrapolation of forces at a low update rate. The rendering algorithm developed was tested and validated on a test platform consisting of a one-dimensional indentation device and an off-the shelf force feedback device. This software system can be used in a cellular manipulation system providing artificial force feedback to enhance a success rate of operations.