• Title/Summary/Keyword: Image Extraction and Segmentation

Search Result 363, Processing Time 0.02 seconds

Automatic Extraction of Ascending Aorta and Ostium in Cardiac CT Angiography Images (심장 CT 혈관 조영 영상에서 대동맥 및 심문 자동 검출)

  • Kim, Hye-Ryun;Kang, Mi-Sun;Kim, Myoung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • Computed tomographic angiography (CTA) is widely used in the diagnosis and treatment of coronary artery disease because it shows not only the whole anatomical structure of the cardiovascular three-dimensionally but also provides information on the lesion and type of plaque. However, due to the large size of the image, there is a limitation in manually extracting coronary arteries, and related researches are performed to automatically extract coronary arteries accurately. As the coronary artery originate from the ascending aorta, the ascending aorta and ostium should be detected to extract the coronary tree accurately. In this paper, we propose an automatic segmentation for the ostium as a starting structure of coronary artery in CTA. First, the region of the ascending aorta is initially detected by using Hough circle transform based on the relative position and size of the ascending aorta. Second, the volume of interest is defined to reduce the search range based on the initial area. Third, the refined ascending aorta is segmented by using a two-dimensional geodesic active contour. Finally, the two ostia are detected within the region of the refined ascending aorta. For the evaluation of our method, we measured the Euclidean distance between the result and the ground truths annotated manually by medical experts in 20 CTA images. The experimental results showed that the ostia were accurately detected.

A Fast Iris Region Finding Algorithm for Iris Recognition (홍채 인식을 위한 고속 홍채 영역 추출 방법)

  • 송선아;김백섭;송성호
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.9
    • /
    • pp.876-884
    • /
    • 2003
  • It is essential to identify both the pupil and iris boundaries for iris recognition. The circular edge detector proposed by Daugman is the most common and powerful method for the iris region extraction. The method is accurate but requires lots of computational time since it is based on the exhaustive search. Some heuristic methods have been proposed to reduce the computational time, but they are not as accurate as that of Daugman. In this paper, we propose a pupil and iris boundary finding algorithm which is faster than and as accurate as that of Daugman. The proposed algorithm searches the boundaries using the Daugman's circular edge detector, but reduces the search region using the problem domain knowledge. In order to find the pupil boundary, the search region is restricted in the maximum and minimum bounding circles in which the pupil resides. The bounding circles are obtained from the binarized pupil image. Two iris boundary points are obtained from the horizontal line passing through the center of the pupil region obtained above. These initial boundary points, together with the pupil point comprise two bounding circles. The iris boundary is searched in this bounding circles. Experiments show that the proposed algorithm is faster than that of Daugman and more accurate than the conventional heuristic methods.

Flood Mapping Using Modified U-NET from TerraSAR-X Images (TerraSAR-X 영상으로부터 Modified U-NET을 이용한 홍수 매핑)

  • Yu, Jin-Woo;Yoon, Young-Woong;Lee, Eu-Ru;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1709-1722
    • /
    • 2022
  • The rise in temperature induced by global warming caused in El Nino and La Nina, and abnormally changed the temperature of seawater. Rainfall concentrates in some locations due to abnormal variations in seawater temperature, causing frequent abnormal floods. It is important to rapidly detect flooded regions to recover and prevent human and property damage caused by floods. This is possible with synthetic aperture radar. This study aims to generate a model that directly derives flood-damaged areas by using modified U-NET and TerraSAR-X images based on Multi Kernel to reduce the effect of speckle noise through various characteristic map extraction and using two images before and after flooding as input data. To that purpose, two synthetic aperture radar (SAR) images were preprocessed to generate the model's input data, which was then applied to the modified U-NET structure to train the flood detection deep learning model. Through this method, the flood area could be detected at a high level with an average F1 score value of 0.966. This result is expected to contribute to the rapid recovery of flood-stricken areas and the derivation of flood-prevention measures.