• Title/Summary/Keyword: Image Edge

Search Result 2,465, Processing Time 0.025 seconds

A Study on Modified Mask for Edge Detection in AWGN Environment (AWGN 환경에서 에지 검출을 위한 변형된 마스크에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2199-2205
    • /
    • 2013
  • In modern society the image processing has been applied to various digital devices such as smartphone, digital camera, and digital TV. In the field of image processing the edge detection is one of the important parts in the image processing procedure. The image edge means point that the pixel value is changed between background and object rapidly, and includes the important information such as magnitude, location, and orientation. The performance of the existing edge detection method is insufficient for the image degraded by AWGN(additive white Gaussian noise) because it detects edges by using small weighted masks. Therefore, in this paper, to detect edge in AWGN environment effectively, we proposed an algorithm that detects edge as calculated gradient of sorting vector which is transformed by estimated mask from new pixel according to each region.

Learning of Rules for Edge Detection of Image using Fuzzy Classifier System (퍼지 분류가 시스템을 이용한 영상의 에지 검출 규칙 학습)

  • 정치선;반창봉;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.252-259
    • /
    • 2000
  • In this paper, we propose a Fuzzy Classifier System(FCS) to find a set of fuzzy rules which can carry out the edge detection of a image. The FCS is based on the fuzzy logic system combined with machine learning. Therefore the antecedent and consequent of a classifier in FCS are the same as those of a fuzzy rule. There are two different approaches, Michigan and Pittsburgh approaches, to acquire appropriate fuzzy rules by evolutionary computation. In this paper, we use the Michigan style in which a single fuzzy if-then rule is coded as an individual. Also the FCS employs the Genetic Algorithms to generate new rules and modify rules when performance of the system needs to be improved. The proposed method is evaluated by applying it to the edge detection of a gray-level image that is a pre-processing step of the computer vision. the differences of average gray-level of the each vertical/horizontal arrays of neighborhood pixels are represented into fuzzy sets, and then the center pixel is decided whether it is edge pixel or not using fuzzy if-then rules. We compare the resulting image with a conventional edge image obtained by the other edge detection method such as Sobel edge detection.

  • PDF

Character Region Detection in Natural Image Using Edge and Connected Component by Morphological Reconstruction (에지 및 형태학적 재구성에 의한 연결요소를 이용한 자연영상의 문자영역 검출)

  • Gwon, Gyo-Hyeon;Park, Jong-Cheon;Jun, Byoung-Min
    • Journal of Korea Entertainment Industry Association
    • /
    • v.5 no.1
    • /
    • pp.127-133
    • /
    • 2011
  • Characters in natural image are an important information with various context. Previous work of character region detection algorithms is not detect of character region in case of image complexity and the surrounding lighting, similar background to character, so this paper propose an method of character region detection in natural image using edge and connected component by morphological reconstructions. Firstly, we detect edge using Canny-edge detector and connected component with local min/max value by morphological reconstructed-operation in gray-scale image, and labeling each of detected connected component elements. lastly, detected candidate of text regions was merged for generation for one candidate text region, Final text region detected by checking the similarity and adjacency of neighbor of text candidate individual character. As the results of experiments, proposed algorithm improved the correctness of character regions detection using edge and connected components.

Overload Measurement and Control of Access Control Channel Based on Hysteresis at Satellite Communication of DAMA (이진영상을 이용한 효율적인 에지 기반의 디인터레이싱 보간 알고리즘)

  • Lee Cheong-Un;Kim Sung-Kwan;Lee Dong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8C
    • /
    • pp.801-809
    • /
    • 2005
  • This paper proposes a new algorithm for improving the performance of the spatial filter which is the most important part of deinterlacing methods. The conventional edge-based algorithms are not satisfactory in deciding the exact edge direction which controls the performance of the interpolation. The proposed algorithm much increases the performance of the intrafield interpolation by finding exact edge directions based on the binary image. Edge directions are decided using 15 by 3 local window to find not only more accurate but also many low-angle edge directions. The proposed interpolation method upgrades the visual quality of the image by alleviating the misleading edge directions. Simulation results for various images show that the proposed method provides better performance than the existing methods do.

A Study on Edge Detection for Images Corrupted by AWGN using Modified Weighted Vector (AWGN에 훼손된 영상에서 변형된 가중치 벡터를 이용한 에지검출에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1518-1523
    • /
    • 2012
  • Due to development of visual media in various industrial sectors, the importance of image processing is increasing. Among the various image processing areas, edge detection is utilized widely for various fields such as object recognition, object segmentation, the medical and other industries. Edge includes the critical factors of images like size, direction and location. Then conventional methods such as Sobel, Prewitt, Roberts and Laplacian are proposed to detect edge. However, edge detection property of these methods is declined when they are applied to the image which corrupted by AWGN(Additive White Gaussian Noise). Therefore, an algorithm using modified weighted filter is proposed in this paper and our method has excellent property on edge detection.

Noise Removal using Canny Edge Detection in AWGN Environments (AWGN 환경에서 캐니 에지 검출을 이용한 잡음 제거)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1540-1546
    • /
    • 2017
  • Digital image processing is widely used in various fields including the military, medical, image recognition system, robot and commercial sectors. But in the process of acquiring and transmitting digital images, noise is generated by various external causes. There are various types of general noise depending on the cause and form, but AWGN and impulse noise is one of the leading methods. Removing noise during image processing is essential to the pre-treatment process such as segmentation, image recognition and characteristic extraction. As such, this paper suggests an algorithm that distinguishes the non-edge area and edge area using the Canny edge to apply different filters to different areas in order to effectively remove noise from the image. To verify the effectiveness of the suggested algorithm, it was compared against existing methods using zoom images, edge images and PSNR(peak signal to noise ratio).

Image-based Extraction of Histogram Index for Concrete Crack Analysis

  • Kim, Bubryur;Lee, Dong-Eun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.912-919
    • /
    • 2022
  • The study is an image-based assessment that uses image processing techniques to determine the condition of concrete with surface cracks. The preparations of the dataset include resizing and image filtering to ensure statistical homogeneity and noise reduction. The image dataset is then segmented, making it more suited for extracting important features and easier to evaluate. The image is transformed into grayscale which removes the hue and saturation but retains the luminance. To create a clean edge map, the edge detection process is utilized to extract the major edge features of the image. The Otsu method is used to minimize intraclass variation between black and white pixels. Additionally, the median filter was employed to reduce noise while keeping the borders of the image. Image processing techniques are used to enhance the significant features of the concrete image, especially the defects. In this study, the tonal zones of the histogram and its properties are used to analyze the condition of the concrete. By examining the histogram, the viewer will be able to determine the information on the image through the number of pixels associated and each tonal characteristic on a graph. The features of the five tonal zones of the histogram which implies the qualities of the concrete image may be evaluated based on the quality of the contrast, brightness, highlights, shadow spikes, or the condition of the shadow region that corresponds to the foreground.

  • PDF

Automatic National Image Interpretability Rating Scales (NIIRS) Measurement Algorithm for Satellite Images (위성영상을 위한 NIIRS(Natinal Image Interpretability Rating Scales) 자동 측정 알고리즘)

  • Kim, Jeahee;Lee, Changu;Park, Jong Won
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.725-735
    • /
    • 2016
  • High-resolution satellite images are used in the fields of mapping, natural disaster forecasting, agriculture, ocean-based industries, infrastructure, and environment, and there is a progressive increase in the development and demand for the applications of high-resolution satellite images. Users of the satellite images desire accurate quality of the provided satellite images. Moreover, the distinguishability of each image captured by an actual satellite varies according to the atmospheric environment and solar angle at the captured region, the satellite velocity and capture angle, and the system noise. Hence , NIIRS must be measured for all captured images. There is a significant deficiency in professional human resources and time resources available to measure the NIIRS of few hundred images that are transmitted daily. Currently, NIIRS is measured every few months or even few years to assess the aging of the satellite as well as to verify and calibrate it [3]. Therefore, we develop an algorithm that can measure the national image interpretability rating scales (NIIRS) of a typical satellite image rather than an artificial target satellite image, in order to automatically assess its quality. In this study, the criteria for automatic edge region extraction are derived based on the previous works on manual edge region extraction [4][5], and consequently, we propose an algorithm that can extract the edge region. Moreover, RER and H are calculated from the extracted edge region for automatic edge region extraction. The average NIIRS value was measured to be 3.6342±0.15321 (2 standard deviations) from the automatic measurement experiment on a typical satellite image, which is similar to the result extracted from the artificial target.

Object Edge-based Image Generation Technique for Constructing Large-scale Image Datasets (대형 이미지 데이터셋 구축을 위한 객체 엣지 기반 이미지 생성 기법)

  • Ju-Hyeok Lee;Mi-Hui Kim
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.280-287
    • /
    • 2023
  • Deep learning advancements can solve computer vision problems, but large-scale datasets are necessary for high accuracy. In this paper, we propose an image generation technique using object bounding boxes and image edge components. The object bounding boxes are extracted from the images through object detection, and image edge components are used as input values for the image generation model to create new image data. As results of experiments, the images generated by the proposed method demonstrated similar image quality to the source images in the image quality assessment, and also exhibited good performance during the deep learning training process.

Implementation of Annotation-Based and Content-Based Image Retrieval System using (영상의 에지 특징정보를 이용한 주석기반 및 내용기반 영상 검색 시스템의 구현)

  • Lee, Tae-Dong;Kim, Min-Koo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.5
    • /
    • pp.510-521
    • /
    • 2001
  • Image retrieval system should be construct for searching fast, efficient image be extract the accurate feature information of image with more massive and more complex characteristics. Image retrieval system are essential differences between image databases and traditional databases. These differences lead to interesting new issues in searching of image, data modeling. So, cause us to consider new generation method of database, efficient retrieval method of image. In this paper, To extract feature information of edge using in searching from input image, we was performed to extract the edge by convolution Laplacian mask and input image, and we implemented the annotation-based and content-based image retrieval system for searching fast, efficient image by generation image database from extracting feature information of edge and metadata. We can improve the performance of the image contents retrieval, because the annotation-based and content-based image retrieval system is using image index which is made up of the content-based edge feature extract information represented in the low level of image and annotation-based edge feature information represented in the high level of image. As a conclusion, image retrieval system proposed in this paper is possible the accurate management of the accumulated information for the image contents and the information sharing and reuse of image because the proposed method do construct the image database by metadata.

  • PDF