• Title/Summary/Keyword: Image Edge

Search Result 2,464, Processing Time 0.034 seconds

A study on Simple and Complex Algorithm of Self Controlled Mobile Robot for the Obstacle Avoidance and Path Plan (자율 이동로봇의 장애물 회피 및 경로계획에 대한 간략화 알고리즘과 복합 알고리즘에 관한 연구)

  • 류한성;최중경;구본민;박무열;권정혁
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.1
    • /
    • pp.115-123
    • /
    • 2002
  • In this paper, we present two types of vision algorithm that mobile robot has CCD camera. for obstacle avoidance and path plan. One is simple algorithm that compare with grey level from input images. Also, The mobile robot depend on image processing and move command from PC host. we has been studied self controlled mobile robot system with CCD camera. This system consists of TMS320F240 digital signal processor, step motor, RF module and CCD camera. we used wireless RF module for movable command transmitting between robot and host PC. This robot go straight until 95 percent filled screen from input image. And the robot recognizes obstacle about 95 percent filled something, so it could avoid the obstacle and conclude new path plan. Another is complex algorithm that image preprocessing by edge detection, converting, thresholding and image processing by labeling, segmentation, pixel density calculation.

Conditional fuzzy cluster filter for color image enhancement under the mixed color noise (혼합된 칼라 잡음하에서 칼라 영상 향상을 위한 조건적인 퍼지 클러스터 필터)

  • Eum, Kyoung-Bae;Han, Seo-Won;Lee, Joon-Whoan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3718-3726
    • /
    • 1999
  • Color image is more effective than gray one in human visual perception. Therefore, color image processing becomes important area. Color images are often corrupted by noises due to the input sensor, channel transmission errors and so on. Some filtering techniques such as vector median, mean filter, and vector $\alpha-trimmed$ mean filter have been used for color noise removal. Among them, vector $\alpha-trimmed$ mean filter gave the best performance in the mixed color noise. But, there are edge shift and blurring effect because vector $\alpha-trimmed$ mean filter is uniformly processed across the image. So, we proposed a conditional fuzzy cluster filter to improve this problems. Simulation results showed that the proposed scheme improves the NCD measure and visual quality over the conventional vector $\alpha-trimmed$ mean filter in the mixed color noise.

  • PDF

A Study on Image Recognition based on the Characteristics of Retinal Cells (망막 세포 특성에 의한 영상인식에 관한 연구)

  • Cho, Jae-Hyun;Kim, Do-Hyeon;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2143-2149
    • /
    • 2007
  • Visual Cortex Stimulator is among artificial retina prosthesis for blind man, is the method that stimulate the brain cell directly without processing the information from retina to visual cortex. In this paper, we propose image construction and recognition model that is similar to human visual processing by recognizing the feature data with orientation information, that is, the characteristics of visual cortex. Back propagation algorithm based on Delta-bar delta is used to recognize after extracting image feature by Kirsh edge detector. Various numerical patterns are used to analyze the performance of proposed method. In experiment, the proposed recognition model to extract image characteristics with the orientation of information from retinal cells to visual cortex makes a little difference in a recognition rate but shows that it is not sensitive in a variety of learning rates similar to human vision system.

Occluded Object Reconstruction and Recognition with Computational Integral Imaging (집적 영상을 이용한 가려진 표적의 복원과 인식)

  • Lee, Dong-Su;Yeom, Seok-Won;Kim, Shin-Hwan;Son, Jung-Young
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.270-275
    • /
    • 2008
  • This paper addresses occluded object reconstruction and recognition with computational integral imaging (II). Integral imaging acquires and reconstructs target information in the three-dimensional (3D) space. The reconstruction is performed by averaging the intensities of the corresponding pixels. The distance to the object is estimated by minimizing the sum of the standard deviation of the pixels. We adopt principal component analysis (PCA) to classify occluded objects in the reconstruction space. The Euclidean distance is employed as a metric for decision making. Experimental and simulation results show that occluded targets are successfully classified by the proposed method.

Image Denoising Via Structure-Aware Deep Convolutional Neural Networks (구조 인식 심층 합성곱 신경망 기반의 영상 잡음 제거)

  • Park, Gi-Tae;Son, Chang-Hwan
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.85-95
    • /
    • 2018
  • With the popularity of smartphones, most peoples have been using mobile cameras to capture photographs. However, due to insufficient amount of lights in a low lighting condition, unwanted noises can be generated during image acquisition. To remove the noise, a method of using deep convolutional neural networks is introduced. However, this method still lacks the ability to describe textures and edges, even though it has made significant progress in terms of visual quality performance. Therefore, in this paper, the HOG (Histogram of Oriented Gradients) images that contain information about edge orientations are used. More specifically, a method of learning deep convolutional neural networks is proposed by stacking noise and HOG images into an input tensor. Experiment results confirm that the proposed method not only can obtain excellent result in visual quality evaluations, compared to conventional methods, but also enable textures and edges to be improved visually.

Application of Total Variation Optimization for Reduction of Head CT Dose (두부 CT 선량감소를 위한 총변량 최적화의 적용)

  • Choi, Seokyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.6
    • /
    • pp.707-712
    • /
    • 2018
  • The number of CT examinations is increasing, and radiation exposure is also increasing. repeated tests can affect the lens and thyroid. In hospitals, there is a tendency to lack interest in major long-term radiation exposure compared to the interest in increasing image information and image quality with head CT. In this study, we analyzed the improvement of image quality by proposed method to the noisy CT images. The proposed denoising method total variance optimization only for the impulsive noise candidate pixels. Experimental results show that edge information is well preserved and impulse noise can be effectively removed. and worked very well for the images according to tube voltage and rotation time. applied to the clinical setting, it can be used as the lowest exposure condition without worrying about the image quality and it will be helpful for the CT application.

Weighted Filter based on Standard Deviation for Impulse Noise Removal (임펄스 잡음 제거를 위한 표준편차 기반의 가중치 필터)

  • Cheon, Bong-Won;Kim, Woo-Young;Sagong, Byung-Il;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.213-215
    • /
    • 2021
  • With the development of IoT technology, various technologies such as artificial intelligence and automation are being grafted into industrial sites, and accordingly, the importance of data processing is increasing. In particular, a system based on a digital image may cause a malfunction due to noise in the image due to a sensor defect or a communication environment problem. Therefore, research on image processing has been continued as a pre-processing process, and an effective noise reduction technique is required depending on the type of noise and the characteristics of the image. In this paper, we propose a modified spatial weight filter to protect edge components in the impulse noise reduction process. The proposed algorithm divides the filtering mask into four regions and calculates the standard deviation of each region. The final output was filtered by applying a spatial weight to the region with the lowest standard deviation value. Simulation was conducted to evaluate the performance of the proposed algorithm, and it showed superior impulse noise reduction performance compared to the existing method.

  • PDF

Evaluation of Image Quality by Using a Tungsten Edge Block in a Megavoltage (MV) X-ray Imaging (텅스텐 엣지 블록을 이용하여 Megavoltage (MV) 영상의 질 평가)

  • Min, Jung-Whan;Son, Jin-Hyun;Kim, Ki-Won;Lee, Jung-Woo;Son, Soon-Yong;Back, Geum-Mun;Kim, Jung-Min;Kim, Yeon-Rae;Jung, Jae-Yong;Kim, Sang-Young;Lee, Do-Wan;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.154-161
    • /
    • 2012
  • Digital Radiography (DR) has rapidly developed in megavoltage X-ray imaging (MVI). Thus, a very simple and general quality assurance (QA) method is required. The purpose of this study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) for MVI using general QA method and computed radiography (CR) device. We used tungsten edge block with $19{\times}10{\times}1cm^3$ thickness and 6MV energy. For detector, CR-IP (image plate), CR-IP-lead, the CR-IP-back (lanex TM fast back screen), CR-IP-front (lanex TM fast front screen) were used and pre-sampling MTF was calculated. The MTF of CR-IP-front showed the highest value with 1.10 lp/mm although the CR-IP showed the only 0.70 lp/mm. The best NPS was observed in CR-IP front screen. According to the increase in spatial frequency, our results showed that DQE was approximately 1.0 cycles/mm. The present study demonstrates that the QA method with our home-made edge block can be used to evaluate MTF, NPS and DQE for MVI.

Analysis of Shadow Effect on High Resolution Satellite Image Matching in Urban Area (도심지역의 고해상도 위성영상 정합에 대한 그림자 영향 분석)

  • Yeom, Jun Ho;Han, You Kyung;Kim, Yong Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Multi-temporal high resolution satellite images are essential data for efficient city analysis and monitoring. Yet even when acquired from the same location, identical sensors as well as different sensors, these multi-temporal images have a geometric inconsistency. Matching points between images, therefore, must be extracted to match the images. With images of an urban area, however, it is difficult to extract matching points accurately because buildings, trees, bridges, and other artificial objects cause shadows over a wide area, which have different intensities and directions in multi-temporal images. In this study, we analyze a shadow effect on image matching of high resolution satellite images in urban area using Scale-Invariant Feature Transform(SIFT), the representative matching points extraction method, and automatic shadow extraction method. The shadow segments are extracted using spatial and spectral attributes derived from the image segmentation. Also, we consider information of shadow adjacency with the building edge buffer. SIFT matching points extracted from shadow segments are eliminated from matching point pairs and then image matching is performed. Finally, we evaluate the quality of matching points and image matching results, visually and quantitatively, for the analysis of shadow effect on image matching of high resolution satellite image.

Image Registration and Fusion between Passive Millimeter Wave Images and Visual Images (수동형 멀리미터파 영상과 가시 영상과의 정합 및 융합에 관한 연구)

  • Lee, Hyoung;Lee, Dong-Su;Yeom, Seok-Won;Son, Jung-Young;Guschin, Vladmir P.;Kim, Shin-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.349-354
    • /
    • 2011
  • Passive millimeter wave imaging has the capability of detecting concealed objects under clothing. Also, passive millimeter imaging can obtain interpretable images under low visibility conditions like rain, fog, smoke, and dust. However, the image quality is often degraded due to low spatial resolution, low signal level, and low temperature resolution. This paper addresses image registration and fusion between passive millimeter images and visual images. The goal of this study is to combine and visualize two different types of information together: human subject's identity and concealed objects. The image registration process is composed of body boundary detection and an affine transform maximizing cross-correlation coefficients of two edge images. The image fusion process comprises three stages: discrete wavelet transform for image decomposition, a fusion rule for merging the coefficients, and the inverse transform for image synthesis. In the experiments, various types of metallic and non-metallic objects such as a knife, gel or liquid type beauty aids and a phone are detected by passive millimeter wave imaging. The registration and fusion process can visualize the meaningful information from two different types of sensors.