• Title/Summary/Keyword: Image Edge

Search Result 2,464, Processing Time 0.029 seconds

A Study on Image Reconstruction using Nonlinear Spatial Filter in Impulse Noise Environments (임펄스 잡음환경에서 비선형 공간필터를 이용한 영상복원에 관한 연구)

  • Kang, Kyeong-Deok;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.750-753
    • /
    • 2007
  • According to the increase of demand for diverse multimedia services, techniques to use images as the tool of information transmission have been rapidly developed. However, impulse noise affecting the reception of image and signal error occurs in the process of digitalization and transmission of images. In order to remove this impulse noise, a nonlinear filter is generally applied and a standard median (SM) filter is representative. However, SM filter degrades the qualify of overall image by error of the edge component. Therefore, in this paper, to restore the corrupted image by impulse noise, a nonlinear spatial filter based on Min-max operation was proposed and was compared with conventional methods through simulations.

  • PDF

A Study on an Image Restoration Algorithm in Complex Noises Environment (복합 잡음환경하에서 영상복원 알고리즘에 관한 연구)

  • Jin, Bo;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.209-212
    • /
    • 2007
  • Digital images are corrupted by noises, during signal acquisition and transmission. Amount those noises, additive white Gaussian noise (AWGN) and impulse noise are most representative. The conventional image restoration algorithms are mostly taken in simple noise environment, but they didn't perform very well in tempter noises environment. So a modified image restoration algorithm, which can remove complex noises by using the intensity differences and spatial distances between center pixel and its neighbor pixels as parameters, is proposed in this paper. Simulation results demonstrate that the proposed algorithm can't only remove AWGN and impulse noise separately, but also performs well in preserving details of images as edge.

  • PDF

CRF-Based Figure/Ground Segmentation with Pixel-Level Sparse Coding and Neighborhood Interactions

  • Zhang, Lihe;Piao, Yongri
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • In this paper, we propose a new approach to learning a discriminative model for figure/ground segmentation by incorporating the bag-of-features and conditional random field (CRF) techniques. We advocate the use of image patches instead of superpixels as the basic processing unit. The latter has a homogeneous appearance and adheres to object boundaries, while an image patch often contains more discriminative information (e.g., local image structure) to distinguish its categories. We use pixel-level sparse coding to represent an image patch. With the proposed feature representation, the unary classifier achieves a considerable binary segmentation performance. Further, we integrate unary and pairwise potentials into the CRF model to refine the segmentation results. The pairwise potentials include color and texture potentials with neighborhood interactions, and an edge potential. High segmentation accuracy is demonstrated on three benchmark datasets: the Weizmann horse dataset, the VOC2006 cow dataset, and the MSRC multiclass dataset. Extensive experiments show that the proposed approach performs favorably against the state-of-the-art approaches.

A Novel Corner Detector using a Non-cornerness Measure

  • Park, Seokmok;Cho, Woon;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.253-261
    • /
    • 2017
  • In this paper, a corner detection method based on a new non-cornerness measure is presented. Rather than evaluating local gradients or surface curvatures, as done in previous approaches, a non-cornerness function is developed that can identify stable corners by testing an image region against a set of desirable corner criteria. The non-cornerness function is comprised of two steps: 1) eliminate any pixel located in a flat region and 2) remove any pixel that is positioned along an edge in any orientation. A pixel that passes the non-cornerness test is considered a reliable corner. The proposed method also adopts the idea of non-maximum suppression to remove multiple corners from the results of the non-cornerness function. The proposed method is compared with previous popular methods and is tested with an artificial test image covering several corner forms and three real-world images that are universally used by the community to evaluate the accuracy of corner detectors. The experimental results show that the proposed method outperforms previous corner detectors with respect to accuracy, and that it is suitable for real-time processing.

Efficient Tracking of a Moving Object using Optimal Representative Blocks

  • Kim, Wan-Cheol;Hwang, Cheol-Ho;Lee, Jang-Myung
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.495-502
    • /
    • 2003
  • This paper focuses on the implementation of an efficient tracking method of a moving object using optimal representative blocks by way of a pan-tilt camera. The key idea is derived from the fact that when the image size of a moving object is shrunk in an image frame according to the distance between the mobile robot camera and the object in motion, the tracking performance of a moving object can be improved by reducing the size of representative blocks according to the object image size. Motion estimations using Edge Detection (ED) and Block-Matching Algorithm (BMA) are regularly employed to track objects by vision sensors. However, these methods often neglect the real-time vision data since these schemes suffer from heavy computational load. In this paper, a representative block able to significantly reduce the amount of data to be computed, is defined and optimized by changing the size of representative blocks according to the size of the object in the image frame in order to improve tracking performance. The proposed algorithm is verified experimentally by using a two degree-of- freedom active camera mounted on a mobile robot.

Self-Localization of Autonomous Mobile Robot using Multiple Landmarks (다중 표식을 이용한 자율이동로봇의 자기위치측정)

  • 강현덕;조강현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.81-86
    • /
    • 2004
  • This paper describes self-localization of a mobile robot from the multiple candidates of landmarks in outdoor environment. Our robot uses omnidirectional vision system for efficient self-localization. This vision system acquires the visible information of all direction views. The robot uses feature of landmarks whose size is bigger than that of others in image such as building, sculptures, placard etc. Robot uses vertical edges and those merged regions as the feature. In our previous work, we found the problem that landmark matching is difficult when selected candidates of landmarks belonging to region of repeating the vertical edges in image. To overcome these problems, robot uses the merged region of vertical edges. If interval of vertical edges is short then robot bundles them regarding as the same region. Thus, these features are selected as candidates of landmarks. Therefore, the extracted merged region of vertical edge reduces the ambiguity of landmark matching. Robot compares with the candidates of landmark between previous and current image. Then, robot is able to find the same landmark between image sequences using the proposed feature and method. We achieved the efficient self-localization result using robust landmark matching method through the experiments implemented in our campus.

A Study on Nonlinear Spatial Filter using Directional Information of Image (영상의 방향성 정보를 이용한 비선형 공간필터에 관한 연구)

  • Kim, Uk;Bae, Sang-Bum;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.359-362
    • /
    • 2007
  • According to the development of information and communication technology, a great deal of researches have been taken in image digital processing field. And for earning the standard level of images, to remove noises such as impulse noise has became a essential demand. In those algorithms which remove impulse noise effectively, the standard median (SM) filter is representative. However, it has a disadvantage to degrade the quality of overall image by occurring errors in the edge domain. Therefore, in this paper, to restore the corrupted image by impulse noise, a nonlinear spatial filter based on Min-max operation was proposed and it was compared with conventional methods through simulations.

  • PDF

Automatic Extraction and Measurement of Visual Features of Mushroom (Lentinus edodes L.) (표고 외관 특징점의 자동 추출 및 측정)

  • Hwang, Heon;Lee, Yong-Guk
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.37-51
    • /
    • 1992
  • Quantizing and extracting visual features of mushroom(Lentinus edodes L.) are crucial to the sorting and grading automation, the growth state measurement, and the dried performance indexing. A computer image processing system was utilized for the extraction and measurement of visual features of front and back sides of the mushroom. The image processing system is composed of the IBM PC compatible 386DK, ITEX PCVISION Plus frame grabber, B/W CCD camera, VGA color graphic monitor, and image output RGB monitor. In this paper, an automatic thresholding algorithm was developed to yield the segmented binary image representing skin states of the front and back sides. An eight directional Freeman's chain coding was modified to solve the edge disconnectivity by gradually expanding the mask size of 3$\times$3 to 9$\times$9. A real scaled geometric quantity of the object was directly extracted from the 8-directional chain element. The external shape of the mushroom was analyzed and converted to the quantitative feature patterns. Efficient algorithms for the extraction of the selected feature patterns and the recognition of the front and back side were developed. The developed algorithms were coded in a menu driven way using MS_C language Ver.6.0, PC VISION PLUS library fuctions, and VGA graphic functions.

  • PDF

An Improved Adaptive Median Filter for Impulse Noise Removal (임펄스 잡음 제거를 위한 개선된 적응 메디안 필터)

  • Long, Xu;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.989-995
    • /
    • 2013
  • Image degradation caused by the impulse noise is generated in the process of image transmission and so on. It has been studied by many researchers in order to remove these noise. The representative impulse noise removal method includes SM filter. Though SM filter will indicate errors by the increasing of impulse noise density. Therefore, in this paper, in order to preserve the edges of the image, and reduce the distortion of the image, an improved adaptive median filter algorithm is proposed. In the simulation results, the algorithm showed excellent results in all several areas, and the PSNR is used as the criterion of evaluation.

Alphabetical Gesture Recognition using HMM (HMM을 이용한 알파벳 제스처 인식)

  • Yoon, Ho-Sub;Soh, Jung;Min, Byung-Woo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.384-386
    • /
    • 1998
  • The use of hand gesture provides an attractive alternative to cumbersome interface devices for human-computer interaction(HCI). Many methods hand gesture recognition using visual analysis have been proposed such as syntactical analysis, neural network(NN), Hidden Markov Model(HMM) and so on. In our research, a HMMs is proposed for alphabetical hand gesture recognition. In the preprocessing stage, the proposed approach consists of three different procedures for hand localization, hand tracking and gesture spotting. The hand location procedure detects the candidated regions on the basis of skin-color and motion in an image by using a color histogram matching and time-varying edge difference techniques. The hand tracking algorithm finds the centroid of a moving hand region, connect those centroids, and thus, produces a trajectory. The spotting a feature database, the proposed approach use the mesh feature code for codebook of HMM. In our experiments, 1300 alphabetical and 1300 untrained gestures are used for training and testing, respectively. Those experimental results demonstrate that the proposed approach yields a higher and satisfying recognition rate for the images with different sizes, shapes and skew angles.

  • PDF