• Title/Summary/Keyword: Image Edge

Search Result 2,472, Processing Time 0.039 seconds

Color Code Detection and Recognition Using Image Segmentation Based on k-Means Clustering Algorithm (k-평균 클러스터링 알고리즘 기반의 영상 분할을 이용한 칼라코드 검출 및 인식)

  • Kim, Tae-Woo;Yoo, Hyeon-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1100-1105
    • /
    • 2006
  • Severe distortions of colors in the obtained images have made it difficult for color codes to expand their applications. To reduce the effect of color distortions on reading colors, it will be more desirable to statistically process as many pixels in the individual color region as possible, than relying on some regularly sampled pixels. This process may require segmentation, which usually requires edge detection. However, edges in color codes can be disconnected due tovarious distortions such as zipper effect and reflection, to name a few, making segmentation incomplete. Edge linking is also a difficult process. In this paper, a more efficient approach to reducing the effect of color distortions on reading colors, one that excludes precise edge detection for segmentation, was obtained by employing the k-means clustering algorithm. And, in detecting color codes, the properties of both six safe colors and grays were utilized. Experiments were conducted on 144, 4M-pixel, outdoor images. The proposed method resulted in a color-code detection rate of 100% fur the test images, and an average color-reading accuracy of over 99% for the detected codes, while the highest accuracy that could be achieved with an approach employing Canny edge detection was 91.28%.

  • PDF

Implementation of Personalized Rehabilitation Exercise Mobile App based on Edge Computing

  • Park, Myeong-Chul;Hur, Hwa-La
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.93-100
    • /
    • 2022
  • In this paper, we propose a mobile app for personalized rehabilitation exercise coaching and management service using an edge computing-based personalized exercise information collection system. The existing management method that relies on user input information has difficulty in examining the actual possibility of rehabilitation. In this paper, we implement an application that collects movement information along with body joint information through image information analysis based on edge computing at a remote location, measures the time and accuracy of the movement, and provides rehabilitation progress through correct posture information. In addition, in connection with the measurement equipment of the rehabilitation center, the health status can be managed, and the accuracy of exercise information and trend analysis information is provided. The results of this study will enable management and coaching according to self-rehabilitation exercises in a contactless environment.

The Edge Computing System for the Detection of Water Usage Activities with Sound Classification (음향 기반 물 사용 활동 감지용 엣지 컴퓨팅 시스템)

  • Seung-Ho Hyun;Youngjoon Chee
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.147-156
    • /
    • 2023
  • Efforts to employ smart home sensors to monitor the indoor activities of elderly single residents have been made to assess the feasibility of a safe and healthy lifestyle. However, the bathroom remains an area of blind spot. In this study, we have developed and evaluated a new edge computer device that can automatically detect water usage activities in the bathroom and record the activity log on a cloud server. Three kinds of sound as flushing, showering, and washing using wash basin generated during water usage were recorded and cut into 1-second scenes. These sound clips were then converted into a 2-dimensional image using MEL-spectrogram. Sound data augmentation techniques were adopted to obtain better learning effect from smaller number of data sets. These techniques, some of which are applied in time domain and others in frequency domain, increased the number of training data set by 30 times. A deep learning model, called CRNN, combining Convolutional Neural Network and Recurrent Neural Network was employed. The edge device was implemented using Raspberry Pi 4 and was equipped with a condenser microphone and amplifier to run the pre-trained model in real-time. The detected activities were recorded as text-based activity logs on a Firebase server. Performance was evaluated in two bathrooms for the three water usage activities, resulting in an accuracy of 96.1% and 88.2%, and F1 Score of 96.1% and 87.8%, respectively. Most of the classification errors were observed in the water sound from washing. In conclusion, this system demonstrates the potential for use in recording the activities as a lifelog of elderly single residents to a cloud server over the long-term.

An Analysis on the Usability of Unmanned Aerial Vehicle(UAV) Image to Identify Water Quality Characteristics in Agricultural Streams (농업지역 소하천의 수질 특성 파악을 위한 UAV 영상 활용 가능성 분석)

  • Kim, Seoung-Hyeon;Moon, Byung-Hyun;Song, Bong-Geun;Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.10-20
    • /
    • 2019
  • Irregular rainfall caused by climate change, in combination with non-point pollution, can cause water systems worldwide to suffer from frequent eutrophication and algal blooms. This type of water pollution is more common in agricultural prone to water system inflow of non-point pollution. Therefore, in this study, the correlation between Unmanned Aerial Vehicle(UAV) multi-spectral images and total phosphorus, total nitrogen, and chlorophyll-a with indirect association of algal blooms, was analyzed to identify the usability of UAV image to identify water quality characteristics in agricultural streams. The analysis the vegetation index Normalized Differences Index (NDVI), the Normalized Differences Red Edge(NDRE), and the Chlorophyll Index Red Edge(CIRE) for the detection of multi-spectral images and algal blooms collected from the target regions Yang cheon and Hamyang Wicheon. The analysis of the correlation between image values and water quality analysis values for the water sampling points, total phosphorus at a significance level of 0.05 was correlated with the CIRE(0.66), and chlorophyll-a showed correlation with Blue(-0.67), Green(-0.66), NDVI(0.75), NDRE (0.67), CIRE(0.74). Total nitrogen was correlated with the Red(-0.64), Red edge (-0.64) and Near-Infrared Ray(NIR)(-0.72) wavelength at the significance level of 0.05. The results of this study confirmed a significant correlations between multi-spectral images collected through UAV and the factors responsible for water pollution, In the case of the vegetation index used for the detection of algal bloom, the possibility of identification of not only chlorophyll-a but also total phosphorus was confirmed. This data will be used as a meaningful data for counterplan such as selecting non-point pollution apprehensive area in agricultural area.

Implementation of Intelligent Image Surveillance System based Context (컨텍스트 기반의 지능형 영상 감시 시스템 구현에 관한 연구)

  • Moon, Sung-Ryong;Shin, Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.11-22
    • /
    • 2010
  • This paper is a study on implementation of intelligent image surveillance system using context information and supplements temporal-spatial constraint, the weak point in which it is hard to process it in real time. In this paper, we propose scene analysis algorithm which can be processed in real time in various environments at low resolution video(320*240) comprised of 30 frames per second. The proposed algorithm gets rid of background and meaningless frame among continuous frames. And, this paper uses wavelet transform and edge histogram to detect shot boundary. Next, representative key-frame in shot boundary is selected by key-frame selection parameter and edge histogram, mathematical morphology are used to detect only motion region. We define each four basic contexts in accordance with angles of feature points by applying vertical and horizontal ratio for the motion region of detected object. These are standing, laying, seating and walking. Finally, we carry out scene analysis by defining simple context model composed with general context and emergency context through estimating each context's connection status and configure a system in order to check real time processing possibility. The proposed system shows the performance of 92.5% in terms of recognition rate for a video of low resolution and processing speed is 0.74 second in average per frame, so that we can check real time processing is possible.

A Combined Hough Transform based Edge Detection and Region Growing Method for Region Extraction (영역 추출을 위한 Hough 변환 기반 에지 검출과 영역 확장을 통합한 방법)

  • N.T.B., Nguyen;Kim, Yong-Kwon;Chung, Chin-Wan;Lee, Seok-Lyong;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.263-279
    • /
    • 2009
  • Shape features in a content-based image retrieval (CBIR) system are divided into two classes: contour-based and region-based. Contour-based shape features are simple but they are not as efficient as region-based shape features. Most systems using the region-based shape feature have to extract the region firs t. The prior works on region-based systems still have shortcomings. They are complex to implement, particularly with respect to region extraction, and do not sufficiently use the spatial relationship between regions in the distance model In this paper, a region extraction method that is the combination of an edge-based method and a region growing method is proposed to accurately extract regions inside an object. Edges inside an object are accurately detected based on the Canny edge detector and the Hough transform. And the modified Integrated Region Matching (IRM) scheme which includes the adjacency relationship of regions is also proposed. It is used to compute the distance between images for the similarity search using shape features. The experimental results show the effectiveness of our region extraction method as well as the modified IRM. In comparison with other works, it is shown that the new region extraction method outperforms others.

A Study on Clutter Rejection using PCA and Stochastic features of Edge Image (주성분 분석법 및 외곽선 영상의 통계적 특성을 이용한 클러터 제거기법 연구)

  • Kang, Suk-Jong;Kim, Do-Jong;Bae, Hyeon-Deok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.12-18
    • /
    • 2010
  • Automatic Target Detection (ATD) systems that use forward-looking infrared (FLIR) consists of three stages. preprocessing, detection, and clutter rejection. All potential targets are extracted in preprocessing and detection stages. But, this results in a high false alarm rates. To reduce false alarm rates of ATD system, true targets are extracted in the clutter rejection stage. This paper focuses on clutter rejection stage. This paper presents a new clutter rejection technique using PCA features and stochastic features of clutters and targets. PCA features are obtained from Euclidian distances using which potential targets are projected to reduced eigenspace selected from target eigenvectors. CV is used for calculating stochastic features of edges in targets and clutters images. To distinguish between target and clutter, LDA (Linear Discriminant Analysis) is applied. The experimental results show that the proposed algorithm accurately classify clutters with a low false rate compared to PCA method or CV method

Extraction and Complement of Hexagonal Borders in Corneal Endothelial Cell Images (각막 내피 세포 영상내 육각형 경계의 검출과 보완법)

  • Kim, Eung-Kyeu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.102-112
    • /
    • 2013
  • In this paper, two step processing method of contour extraction and complement which contain hexagonal shape for low contrast and noisy images is proposed. This method is based on the combination of Laplacian-Gaussian filter and an idea of filters which are dependent on the shape. At the first step, an algorithm which has six masks as its extractors to extract the hexagonal edges especially in the corners is used. Here, two tricorn filters are used to detect the tricorn joints of hexagons and other four masks are used to enhance the line segments of hexagonal edges. As a natural image, a corneal endothelial cell image which usually has regular hexagonal form is selected. The edge extraction of hexagonal shapes in corneal endothelial cell is important for clinical diagnosis. The proposed algorithm and other conventional methods are applied to noisy hexagonal images to evaluate each efficiency. As a result, this proposed algorithm shows a robustness against noises and better detection ability in the aspects of the output signal to noise ratio, the edge coincidence ratio and the extraction accuracy factor as compared with other conventional methods. At the second step, the lacking part of the thinned image by an energy minimum algorithm is complemented, and then the area and distribution of cells which give necessary information for medical diagnosis are computed.

Design of Small-sized Scintillation Pixel Detector with a Light Guide made of the Same Material as the Scintillation Pixel (섬광 픽셀과 동일한 물질로 광가이드를 적용한 매우 작은 섬광 픽셀 검출기 설계)

  • Seung-Jae Lee;Byungdu Jo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.523-529
    • /
    • 2023
  • In order to achieve excellent spatial resolution, very small scintillation pixels are used in detectors of positron emission tomography for small animals. However, by using these very small scintillation pixels, scintillation pixels at the edge of the array may overlap in a flood image. To solve this problem, a light guide capable of changing the distribution of light was used. Depending on the material of the light guide, the light spreading tendency is different, and accordingly, the presence or absence of overlapping is different depending on the material of the light guide used. In this study, instead of the conventional glass light guide, a detector using the same material as the scintillation pixel was designed. A scintillator light guide has a higher refractive index than a glass light guide, so the light spread is different. Flood images were acquired to evaluate the degree of separation of the scintillation pixels at the edge of the detector using the two light guides. The degree of separation was evaluated by calculating the distance between the center and the spatial resolution of the image of two scintillation pixels at the edge of the obtained flood image. As a result, when the scintillator light guide was used, better spatial resolution was shown, and the distance between centers of scintillation pixels was wider. When a detector is constructed using a scintillator light guide instead of a conventional glass light guide, it is possible to use a smaller scintillation pixel, thereby securing better spatial resolution.

Efficient Tracking of a Moving Object Using Representative Blocks Algorithm

  • Choi, Sung-Yug;Hur, Hwa-Ra;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.678-681
    • /
    • 2004
  • In this paper, efficient tracking of a moving object using optimal representative blocks is implemented by a mobile robot with a pan-tilt camera. The key idea comes from the fact that when the image size of moving object is shrunk in an image frame according to the distance between the camera of mobile robot and the moving object, the tracking performance of a moving object can be improved by changing the size of representative blocks according to the object image size. Motion estimation using Edge Detection(ED) and Block-Matching Algorithm(BMA) is often used in the case of moving object tracking by vision sensors. However these methods often miss the real-time vision data since these schemes suffer from the heavy computational load. In this paper, the optimal representative block that can reduce a lot of data to be computed, is defined and optimized by changing the size of representative block according to the size of object in the image frame to improve the tracking performance. The proposed algorithm is verified experimentally by using a two degree-of-freedom active camera mounted on a mobile robot.

  • PDF