• Title/Summary/Keyword: Image Detection

Search Result 5,642, Processing Time 0.03 seconds

Accuracy Improvement of Pig Detection using Image Processing and Deep Learning Techniques on an Embedded Board (임베디드 보드에서 영상 처리 및 딥러닝 기법을 혼용한 돼지 탐지 정확도 개선)

  • Yu, Seunghyun;Son, Seungwook;Ahn, Hanse;Lee, Sejun;Baek, Hwapyeong;Chung, Yongwha;Park, Daihee
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.4
    • /
    • pp.583-599
    • /
    • 2022
  • Although the object detection accuracy with a single image has been significantly improved with the advance of deep learning techniques, the detection accuracy for pig monitoring is challenged by occlusion problems due to a complex structure of a pig room such as food facility. These detection difficulties with a single image can be mitigated by using a video data. In this research, we propose a method in pig detection for video monitoring environment with a static camera. That is, by using both image processing and deep learning techniques, we can recognize a complex structure of a pig room and this information of the pig room can be utilized for improving the detection accuracy of pigs in the monitored pig room. Furthermore, we reduce the execution time overhead by applying a pruning technique for real-time video monitoring on an embedded board. Based on the experiment results with a video data set obtained from a commercial pig farm, we confirmed that the pigs could be detected more accurately in real-time, even on an embedded board.

Change Detection in Bitemporal Remote Sensing Images by using Feature Fusion and Fuzzy C-Means

  • Wang, Xin;Huang, Jing;Chu, Yanli;Shi, Aiye;Xu, Lizhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1714-1729
    • /
    • 2018
  • Change detection of remote sensing images is a profound challenge in the field of remote sensing image analysis. This paper proposes a novel change detection method for bitemporal remote sensing images based on feature fusion and fuzzy c-means (FCM). Different from the state-of-the-art methods that mainly utilize a single image feature for difference image construction, the proposed method investigates the fusion of multiple image features for the task. The subsequent problem is regarded as the difference image classification problem, where a modified fuzzy c-means approach is proposed to analyze the difference image. The proposed method has been validated on real bitemporal remote sensing data sets. Experimental results confirmed the effectiveness of the proposed method.

Ordinal Measure of DCT Coefficients for Image Correspondence and Its Application to Copy Detection

  • Changick Kim
    • Journal of Broadcast Engineering
    • /
    • v.7 no.2
    • /
    • pp.168-180
    • /
    • 2002
  • This paper proposes a novel method to detect unauthorized copies of digital images. This copy detection scheme can be used as either an alternative approach or a complementary approach to watermarking. A test image is reduced to 8$\times$8 sub-image by intensity averaging, and the AC coefficients of its discrete cosine transform (DCT) are used to compute distance from those generated from the query image, of which a user wants to find copies. Copies may be Processed to avoid copy detection or enhance image quality. We show ordinal measure of DCT coefficients, which is based on relative ordering of AC magnitude values and using distance metrics between two rank permutations, are robust to various modifications of the original image. The optimal threshold selection scheme using the maximum a posteriori (MAP) criterion is also addressed.

Implementation of Image Gradient Detection System with High-Performance DSP (고성능 DSP를 이용한 영상기울기 검출 시스템 구현에 관한 연구)

  • Lee, Seung-Joon;Rhee, Sang-Burm
    • Journal of the Korea Computer Industry Society
    • /
    • v.9 no.3
    • /
    • pp.129-136
    • /
    • 2008
  • This paper implement image gradient detection algorithm with high-performance DSP. First the NTSC color image convert to B/W image. The image gradient detect with Hough transform after edge detection image from the B/W images. The value of image gradient detection control the servo motor to original position of the NTSC camera if camera base to the left or right tilt.

  • PDF

Comparative Analysis of Detection Algorithms for Corner and Blob Features in Image Processing

  • Xiong, Xing;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.284-290
    • /
    • 2013
  • Feature detection is very important to image processing area. In this paper we compare and analyze some characteristics of image processing algorithms for corner and blob feature detection. We also analyze the simulation results through image matching process. We show that how these algorithms work and how fast they execute. The simulation results are shown for helping us to select an algorithm or several algorithms extracting corner and blob feature.

Coordinates Matching in the Image Detection System For the Road Traffic Data Analysis

  • Kim, Jinman;Kim, Hiesik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.35.4-35
    • /
    • 2001
  • Image detection system for road traffic data analysis is a real time detection system using image processing techniques to get the real-time traffic information which is used for traffic control and analysis. One of the most important functions in this system is to match the coordinates of real world and that of image on video camera. When there in no way to know the exact position of camera and it´s height from the object. If some points on the road of real world are known it is possible to calculate the coordinates of real world from image.

  • PDF

An Efficient Dead Pixel Detection Algorithm and VLSI Implementation (효율적인 불량화소 검출 알고리듬 및 하드웨어 구현)

  • An Jee-Hoon;Lee Won-Jae;Kim Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.38-43
    • /
    • 2006
  • In this paper, we propose the efficient dead pixel detection algorithm for CMOS image sensors and its hardware architecture. The CMOS image sensors as image input devices are becoming popular due to the demand for miniaturized, low-power and cost-effective imaging systems. However, the presence of the dead pixels degrade the image quality. To detect the dead pixels, the proposed algorithm is composed of scan, trace and detection step. The experimental results showed that it could detect 99.99% of dead pixels. It was designed in a hardware description language and total logic gate count is 3.2k using 0.25 CMOS standard cell library.

Multi-spectral Vehicle Detection based on Convolutional Neural Network

  • Choi, Sungil;Kim, Seungryong;Park, Kihong;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.12
    • /
    • pp.1909-1918
    • /
    • 2016
  • This paper presents a unified framework for joint Convolutional Neural Network (CNN) based vehicle detection by leveraging multi-spectral image pairs. With the observation that under challenging environments such as night vision and limited light source, vehicle detection in a single color image can be more tractable by using additional far-infrared (FIR) image, we design joint CNN architecture for both RGB and FIR image pairs. We assume that a score map from joint CNN applied to overall image can be considered as confidence of vehicle existence. To deal with various scale ratios of vehicle candidates, multi-scale images are first generated scaling an image according to possible scale ratio of vehicles. The vehicle candidates are then detected on local maximal on each score maps. The generation of overlapped candidates is prevented with non-maximal suppression on multi-scale score maps. The experimental results show that our framework have superior performance than conventional methods with a joint framework of multi-spectral image pairs reducing false positive generated by conventional vehicle detection framework using only single color image.

An Improved Area Edge Detection for Real-time Image Processing (실시간 영상 처리를 위한 향상된 영역 경계 검출)

  • Kim, Seung-Hee;Nam, Si-Byung;Lim, Hae-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.99-106
    • /
    • 2009
  • Though edge detection, an important stage that significantly affecting the performance of image recognition, has been given numerous researches on its execution methods, it still remains as difficult problem and it is one of the components for image recognition applications while it is not the only way to identify an object or track a specific area. This paper, unlike gradient operator using edge detection method, found out edge pixel by referring to 2 neighboring pixels information in binary image and comparing them with pre-defined 4 edge pixels pattern, and detected binary image edge by determining the direction of the next edge detection exploring pixel and proposed method to detect binary image edge by repeating step of edge detection to detect another area edge. When recognizing image, if edge is detected with the use of gradient operator, thinning process, the stage next to edge detection, can be omitted, and with the edge detection algorithm executing time reduced compared with existing area edge tracing method, the entire image recognizing time can be reduced by applying real-time image recognizing system.

A Vision-based Damage Detection for Bridge Cables (교량케이블 영상기반 손상탐지)

  • Ho, Hoai-Nam;Lee, Jong-Jae
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.39-39
    • /
    • 2011
  • This study presents an effective vision-based system for cable bridge damage detection. In theory, cable bridges need to be inspected the outer as well as the inner part. Starting from August 2010, a new research project supported by Korea Ministry of Land, Transportation Maritime Affairs(MLTM) was initiated focusing on the damage detection of cable system. In this study, only the surface damage detection algorithm based on a vision-based system will be focused on, an overview of the vision-based cable damage detection is given in Fig. 1. Basically, the algorithm combines the image enhancement technique with principal component analysis(PCA) to detect damage on cable surfaces. In more detail, the input image from a camera is processed with image enhancement technique to improve image quality, and then it is projected into PCA sub-space. Finally, the Mahalanobis square distance is used for pattern recognition. The algorithm was verified through laboratory tests on three types of cable surface. The algorithm gave very good results, and the next step of this study is to implement the algorithm for real cable bridges.

  • PDF