• Title/Summary/Keyword: Image Deep Learning

Search Result 1,797, Processing Time 0.03 seconds

CNN-Based Fake Image Identification with Improved Generalization (일반화 능력이 향상된 CNN 기반 위조 영상 식별)

  • Lee, Jeonghan;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.12
    • /
    • pp.1624-1631
    • /
    • 2021
  • With the continued development of image processing technology, we live in a time when it is difficult to visually discriminate processed (or tampered) images from real images. However, as the risk of fake images being misused for crime increases, the importance of image forensic science for identifying fake images is emerging. Currently, various deep learning-based identifiers have been studied, but there are still many problems to be used in real situations. Due to the inherent characteristics of deep learning that strongly relies on given training data, it is very vulnerable to evaluating data that has never been viewed. Therefore, we try to find a way to improve generalization ability of deep learning-based fake image identifiers. First, images with various contents were added to the training dataset to resolve the over-fitting problem that the identifier can only classify real and fake images with specific contents but fails for those with other contents. Next, color spaces other than RGB were exploited. That is, fake image identification was attempted on color spaces not considered when creating fake images, such as HSV and YCbCr. Finally, dropout, which is commonly used for generalization of neural networks, was used. Through experimental results, it has been confirmed that the color space conversion to HSV is the best solution and its combination with the approach of increasing the training dataset significantly can greatly improve the accuracy and generalization ability of deep learning-based identifiers in identifying fake images that have never been seen before.

A Study on Image Classification using Deep Learning-Based Transfer Learning (딥 러닝 기반의 전이 학습을 이용한 이미지 분류에 관한 연구)

  • Jung-Hee Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.413-420
    • /
    • 2023
  • For a long time, researchers have presented excellent results in the field of image retrieval due to many studies on CBIR. However, there is still a semantic gap between these search results for images and human perception. It is still a difficult problem to classify images with a level of human perception using a small number of images. Therefore, this paper proposes an image classification model using deep learning-based transfer learning to minimize the semantic gap between images of people and search systems in image retrieval. As a result of the experiment, the loss rate of the learning model was 0.2451% and the accuracy was 0.8922%. The implementation of the proposed image classification method was able to achieve the desired goal. And in deep learning, it was confirmed that the CNN's transfer learning model method was effective in creating an image database by adding new data.

KOMPSAT Optical Image Registration via Deep-Learning Based OffsetNet Model (딥러닝 기반 OffsetNet 모델을 통한 KOMPSAT 광학 영상 정합)

  • Jin-Woo Yu;Che-Won Park;Hyung-Sup Jung
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1707-1720
    • /
    • 2023
  • With the increase in satellite time series data, the utility of remote sensing data is growing. In the analysis of time series data, the relative positional accuracy between images has a significant impact on the results, making image registration essential for correction. In recent years, research on image registration has been increasing by applying deep learning, which outperforms existing image registration algorithms. To train deep learning-based registration models, a large number of image pairs are required. Additionally, creating a correlation map between the data of existing deep learning models and applying additional computations to extract registration points is inefficient. To overcome these drawbacks, this study developed a data augmentation technique for training image registration models and applied it to OffsetNet, a registration model that predicts the offset amount itself, to perform image registration for KOMSAT-2, -3, and -3A. The results of the model training showed that OffsetNet accurately predicted the offset amount for the test data, enabling effective registration of the master and slave images.

A Comparative Study on Performance of Deep Learning Models for Vision-based Concrete Crack Detection according to Model Types (영상기반 콘크리트 균열 탐지 딥러닝 모델의 유형별 성능 비교)

  • Kim, Byunghyun;Kim, Geonsoon;Jin, Soomin;Cho, Soojin
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.50-57
    • /
    • 2019
  • In this study, various types of deep learning models that have been proposed recently are classified according to data input / output types and analyzed to find the deep learning model suitable for constructing a crack detection model. First the deep learning models are classified into image classification model, object segmentation model, object detection model, and instance segmentation model. ResNet-101, DeepLab V2, Faster R-CNN, and Mask R-CNN were selected as representative deep learning model of each type. For the comparison, ResNet-101 was implemented for all the types of deep learning model as a backbone network which serves as a main feature extractor. The four types of deep learning models were trained with 500 crack images taken from real concrete structures and collected from the Internet. The four types of deep learning models showed high accuracy above 94% during the training. Comparative evaluation was conducted using 40 images taken from real concrete structures. The performance of each type of deep learning model was measured using precision and recall. In the experimental result, Mask R-CNN, an instance segmentation deep learning model showed the highest precision and recall on crack detection. Qualitative analysis also shows that Mask R-CNN could detect crack shapes most similarly to the real crack shapes.

A Study on Area Detection Using Transfer-Learning Technique (Transfer-Learning 기법을 이용한 영역검출 기법에 관한 연구)

  • Shin, Kwang-seong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.178-179
    • /
    • 2018
  • Recently, methods of using machine learning in artificial intelligence such as autonomous navigation and speech recognition have been actively studied. Classical image processing methods such as classical boundary detection and pattern recognition have many limitations in order to recognize a specific object or area in a digital image. However, when a machine learning method such as deep-learning is used, Can be obtained. However, basically, a large amount of learning data must be secured for machine learning such as deep-learning. Therefore, it is difficult to apply the machine learning for area classification when the amount of data is very small, such as aerial photographs for environmental analysis. In this study, we apply a transfer-learning technique that can be used when the dataset size of the input image is small and the shape of the input image is not included in the category of the training dataset.

  • PDF

Image Analysis of Tongue for Deep Learning (이미지 딥러닝을 위한 설진 이미지 분석)

  • Seo, Jin-Beom;Lee, Jae-kyung;Cho, Young-Bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.50-51
    • /
    • 2021
  • In this paper, in order to design an image deep learning algorithm using a Lunar New Year image, a preliminary study on the shape and shadow of the image is conducted. In order to perform image deep learning, it is necessary to identify the characteristics of the Lunar New Year image, configure an appropriate label, and proceed with the preprocessing process. Image data is a cohort photo collected by Daejeon University, and based on this, we intend to establish a goal for conducting research from the data.

  • PDF

Development of an Actor-Critic Deep Reinforcement Learning Platform for Robotic Grasping in Real World (현실 세계에서의 로봇 파지 작업을 위한 정책/가치 심층 강화학습 플랫폼 개발)

  • Kim, Taewon;Park, Yeseong;Kim, Jong Bok;Park, Youngbin;Suh, Il Hong
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.197-204
    • /
    • 2020
  • In this paper, we present a learning platform for robotic grasping in real world, in which actor-critic deep reinforcement learning is employed to directly learn the grasping skill from raw image pixels and rarely observed rewards. This is a challenging task because existing algorithms based on deep reinforcement learning require an extensive number of training data or massive computational cost so that they cannot be affordable in real world settings. To address this problems, the proposed learning platform basically consists of two training phases; a learning phase in simulator and subsequent learning in real world. Here, main processing blocks in the platform are extraction of latent vector based on state representation learning and disentanglement of a raw image, generation of adapted synthetic image using generative adversarial networks, and object detection and arm segmentation for the disentanglement. We demonstrate the effectiveness of this approach in a real environment.

Low-light Image Enhancement Method Using Decomposition-based Deep-Learning (분해 심층 학습을 이용한 저조도 영상 개선 방식)

  • Oh, Jong-Geun;Hong, Min-Cheol
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.139-147
    • /
    • 2021
  • This paper introduces an image decomposition-based deep learning method and loss function to improve low-light images. In order to remove color distortion and halo artifact, illuminance channel of an input image is decomposed into reflectance and luminance channels, and a decomposition-based multiple structural deep learning process is applied to each channel. In addition, a mixed norm-based loss function is described to increase the stability and remove blurring in reconstructed image. Experimental results show that the proposed method effectively improve various low-light images.

Development of Virtual Simulator and Database for Deep Learning-based Object Detection (딥러닝 기반 장애물 인식을 위한 가상환경 및 데이터베이스 구축)

  • Lee, JaeIn;Gwak, Gisung;Kim, KyongSu;Kang, WonYul;Shin, DaeYoung;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.9-18
    • /
    • 2021
  • This study proposes a method for creating learning datasets to recognize obstacles using deep learning algorithms in automated construction machinery or an autonomous vehicle. Recently, many researchers and engineers have developed various recognition algorithms based on deep learning following an increase in computing power. In particular, the image classification technology and image segmentation technology represent deep learning recognition algorithms. They are used to identify obstacles that interfere with the driving situation of an autonomous vehicle. Therefore, various organizations and companies have started distributing open datasets, but there is a remote possibility that they will perfectly match the user's desired environment. In this study, we created an interface of the virtual simulator such that users can easily create their desired training dataset. In addition, the customized dataset was further advanced by using the RDBMS system, and the recognition rate was improved.

Joint Demosaicing and Super-resolution of Color Filter Array Image based on Deep Image Prior Network

  • Kurniawan, Edwin;Lee, Suk-Ho
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.13-21
    • /
    • 2022
  • In this paper, we propose a learning based joint demosaicing and super-resolution framework which uses only the mosaiced color filter array(CFA) image as the input. As the proposed method works only on the mosaicied CFA image itself, there is no need for a large dataset. Based on our framework, we proposed two different structures, where the first structure uses one deep image prior network, while the second uses two. Experimental results show that even though we use only the CFA image as the training image, the proposed method can result in better visual quality than other bilinear interpolation combined demosaicing methods, and therefore, opens up a new research area for joint demosaicing and super-resolution on raw images.