• 제목/요약/키워드: Image Deep Learning

검색결과 1,851건 처리시간 0.027초

Facial Expression Recognition through Self-supervised Learning for Predicting Face Image Sequence

  • Yoon, Yeo-Chan;Kim, Soo Kyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권9호
    • /
    • pp.41-47
    • /
    • 2022
  • 본 논문에서는 자동표정인식을 위하여 얼굴 이미지 배열의 가운데 이미지를 예측하는 새롭고 간단한 자기주도학습 방법을 제안한다. 자동표정인식은 딥러닝 모델을 통해 높은 성능을 달성할 수 있으나 일반적으로 큰 비용과 시간이 투자된 대용량의 데이터 세트가 필요하고, 데이터 세트의 크기와 알고리즘의 성능이 비례한다. 제안하는 방법은 추가적인 데이터 세트 구축 없이 기존의 데이터 세트를 활용하여 자기주도학습을 통해 얼굴의 잠재적인 심층표현방법을 학습하고 학습된 파라미터를 전이시켜 자동표정인식의 성능을 향상한다. 제안한 방법은 CK+와 AFEW 8.0 두가지 데이터 세트에 대하여 높은 성능 향상을 보여주었고, 간단한 방법으로 큰 효과를 얻을 수 있음을 보여주었다.

3차원 의료 영상의 영역 분할을 위한 효율적인 데이터 보강 방법 (An Efficient Data Augmentation for 3D Medical Image Segmentation)

  • 박상근
    • 융복합기술연구소 논문집
    • /
    • 제11권1호
    • /
    • pp.1-5
    • /
    • 2021
  • Deep learning based methods achieve state-of-the-art accuracy, however, they typically rely on supervised training with large labeled datasets. It is known in many medical applications that labeling medical images requires significant expertise and much time, and typical hand-tuned approaches for data augmentation fail to capture the complex variations in such images. This paper proposes a 3D image augmentation method to overcome these difficulties. It allows us to enrich diversity of training data samples that is essential in medical image segmentation tasks, thus reducing the data overfitting problem caused by the fact the scale of medical image dataset is typically smaller. Our numerical experiments demonstrate that the proposed approach provides significant improvements over state-of-the-art methods for 3D medical image segmentation.

유사 이미지 분류를 위한 딥 러닝 성능 향상 기법 연구 (Research on Deep Learning Performance Improvement for Similar Image Classification)

  • 임동진;김태홍
    • 한국콘텐츠학회논문지
    • /
    • 제21권8호
    • /
    • pp.1-9
    • /
    • 2021
  • 딥 러닝을 활용한 컴퓨터 비전 연구는 여전히 대규모의 학습 데이터와 컴퓨팅 파워가 필수적이며, 최적의 네트워크 구조를 도출하기 위해 많은 시행착오가 수반된다. 본 연구에서는 네트워크 최적화나 데이터를 보강하는 것과 무관하게 데이터 자체의 특성만을 고려한 CR(Confusion Rate)기반의 유사 이미지 분류 성능 향상 기법을 제안한다. 제안 방법은 유사한 이미지 데이터를 정확히 분류하기 위해 CR을 산출하고 이를 손실 함수의 가중치에 반영함으로서 딥 러닝 모델의 성능을 향상시키는 기법을 제안한다. 제안 방법은 네트워크 최적화 결과와 독립적으로 이미지 분류 성능의 향상을 가져올 수 있으며, 클래스 간의 유사성을 고려해 유사도가 높은 이미지 식별에 적합하다. 제안 방법의 평가결과 HanDB에서는 0.22%, Animal-10N에서는 3.38%의 성능향상을 보였다. 제안한 방법은 다양한 Noisy Labeled 데이터를 활용한 인공지능 연구에 기반이 될 것을 기대한다.

A Model of Strawberry Pest Recognition using Artificial Intelligence Learning

  • Guangzhi Zhao
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권2호
    • /
    • pp.133-143
    • /
    • 2023
  • In this study, we propose a big data set of strawberry pests collected directly for diagnosis model learning and an automatic pest diagnosis model architecture based on deep learning. First, a big data set related to strawberry pests, which did not exist anywhere before, was directly collected from the web. A total of more than 12,000 image data was directly collected and classified, and this data was used to train a deep learning model. Second, the deep-learning-based automatic pest diagnosis module is a module that classifies what kind of pest or disease corresponds to when a user inputs a desired picture. In particular, we propose a model architecture that can optimally classify pests based on a convolutional neural network among deep learning models. Through this, farmers can easily identify diseases and pests without professional knowledge, and can respond quickly accordingly.

국내학회지 논문 리뷰를 통한 원격탐사 분야 딥러닝 연구 동향 분석 (Analysis of Deep Learning Research Trends Applied to Remote Sensing through Paper Review of Korean Domestic Journals)

  • 이창희;윤예린;배세정;어양담;김창재;신상호;박소영;한유경
    • 한국측량학회지
    • /
    • 제39권6호
    • /
    • pp.437-456
    • /
    • 2021
  • 우리나라 원격탐사 분야에서는 2017년을 기점으로 딥러닝의 뛰어난 성능을 바탕으로 연구 성과를 나타내기 시작하여, 현재는 영상 전처리부터 활용까지 원격탐사의 거의 모든 분야에서 딥러닝을 적용하는 연구가 수행되고 있다. 원격탐사 분야에 적용된 딥러닝의 연구 동향 분석을 수행하기 위해, 2021년 10월까지 출판된 원격탐사 분야에 딥러닝이 적용된 국내 논문들을 수집하였다. 수집된 60여 편의 논문들을 바탕으로 딥러닝 네트워크 목적, 원격탐사 활용 분야, 원격탐사 영상 취득 탑재체별로 나누어 연구 동향 분석을 수행하였다. 또한, 논문에서 훈련자료 구축에 효과적으로 이용되었던 오픈소스데이터들을 정리하였다. 본 논문을 통해 현시점에서 딥러닝이 원격탐사 분야에 자리잡기 위해 해결해야 할 문제점들을 제시하면서, 향후 연구자들의 원격탐사 분야에 딥러닝 기술을 접목하기 위한 연구 방향을 설정하는 데 도움을 제공하고자 한다.

Structural Crack Detection Using Deep Learning: An In-depth Review

  • Safran Khan;Abdullah Jan;Suyoung Seo
    • 대한원격탐사학회지
    • /
    • 제39권4호
    • /
    • pp.371-393
    • /
    • 2023
  • Crack detection in structures plays a vital role in ensuring their safety, durability, and reliability. Traditional crack detection methods sometimes need significant manual inspections, which are laborious, expensive, and prone to error by humans. Deep learning algorithms, which can learn intricate features from large-scale datasets, have emerged as a viable option for automated crack detection recently. This study presents an in-depth review of crack detection methods used till now, like image processing, traditional machine learning, and deep learning methods. Specifically, it will provide a comparative analysis of crack detection methods using deep learning, aiming to provide insights into the advancements, challenges, and future directions in this field. To facilitate comparative analysis, this study surveys publicly available crack detection datasets and benchmarks commonly used in deep learning research. Evaluation metrics employed to check the performance of different models are discussed, with emphasis on accuracy, precision, recall, and F1-score. Moreover, this study provides an in-depth analysis of recent studies and highlights key findings, including state-of-the-art techniques, novel architectures, and innovative approaches to address the shortcomings of the existing methods. Finally, this study provides a summary of the key insights gained from the comparative analysis, highlighting the potential of deep learning in revolutionizing methodologies for crack detection. The findings of this research will serve as a valuable resource for researchers in the field, aiding them in selecting appropriate methods for crack detection and inspiring further advancements in this domain.

Unsupervised Learning-Based Pipe Leak Detection using Deep Auto-Encoder

  • Yeo, Doyeob;Bae, Ji-Hoon;Lee, Jae-Cheol
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권9호
    • /
    • pp.21-27
    • /
    • 2019
  • In this paper, we propose a deep auto-encoder-based pipe leak detection (PLD) technique from time-series acoustic data collected by microphone sensor nodes. The key idea of the proposed technique is to learn representative features of the leak-free state using leak-free time-series acoustic data and the deep auto-encoder. The proposed technique can be used to create a PLD model that detects leaks in the pipeline in an unsupervised learning manner. This means that we only use leak-free data without labeling while training the deep auto-encoder. In addition, when compared to the previous supervised learning-based PLD method that uses image features, this technique does not require complex preprocessing of time-series acoustic data owing to the unsupervised feature extraction scheme. The experimental results show that the proposed PLD method using the deep auto-encoder can provide reliable PLD accuracy even considering unsupervised learning-based feature extraction.

Comparison of GAN Deep Learning Methods for Underwater Optical Image Enhancement

  • Kim, Hong-Gi;Seo, Jung-Min;Kim, Soo Mee
    • 한국해양공학회지
    • /
    • 제36권1호
    • /
    • pp.32-40
    • /
    • 2022
  • Underwater optical images face various limitations that degrade the image quality compared with optical images taken in our atmosphere. Attenuation according to the wavelength of light and reflection by very small floating objects cause low contrast, blurry clarity, and color degradation in underwater images. We constructed an image data of the Korean sea and enhanced it by learning the characteristics of underwater images using the deep learning techniques of CycleGAN (cycle-consistent adversarial network), UGAN (underwater GAN), FUnIE-GAN (fast underwater image enhancement GAN). In addition, the underwater optical image was enhanced using the image processing technique of Image Fusion. For a quantitative performance comparison, UIQM (underwater image quality measure), which evaluates the performance of the enhancement in terms of colorfulness, sharpness, and contrast, and UCIQE (underwater color image quality evaluation), which evaluates the performance in terms of chroma, luminance, and saturation were calculated. For 100 underwater images taken in Korean seas, the average UIQMs of CycleGAN, UGAN, and FUnIE-GAN were 3.91, 3.42, and 2.66, respectively, and the average UCIQEs were measured to be 29.9, 26.77, and 22.88, respectively. The average UIQM and UCIQE of Image Fusion were 3.63 and 23.59, respectively. CycleGAN and UGAN qualitatively and quantitatively improved the image quality in various underwater environments, and FUnIE-GAN had performance differences depending on the underwater environment. Image Fusion showed good performance in terms of color correction and sharpness enhancement. It is expected that this method can be used for monitoring underwater works and the autonomous operation of unmanned vehicles by improving the visibility of underwater situations more accurately.

통합메모리를 이용한 임베디드 환경에서의 딥러닝 프레임워크 성능 개선과 평가 (Performance Enhancement and Evaluation of a Deep Learning Framework on Embedded Systems using Unified Memory)

  • 이민학;강우철
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권7호
    • /
    • pp.417-423
    • /
    • 2017
  • 최근, 딥러닝을 사용 가능한 임베디드 디바이스가 상용화됨에 따라 임베디드 시스템 영역에서도 딥러닝 활용에 대한 다양한 연구가 진행되고 있다. 그러나 임베디드 시스템을 고성능 PC 환경과 비교하면 상대적으로 저사양의 CPU/GPU 프로세서와 메모리를 탑재하고 있으므로 딥러닝 기술의 적용에 있어서 많은 제약이 있다. 본 논문에서는 다양한 최신 딥러닝 네트워크들을 임베디드 디바이스에 적용했을때의 성능을 시간과 전력이라는 관점에서 실험적으로 평가한다. 또한, 호스트 CPU와 GPU 디바이스간의 메모리를 공유하는 임베디드 시스템들의 아키텍처적인 특성을 이용하여 메모리 복사를 줄임으로써 실시간 성능과 저전력성을 높이는 방법을 제시한다. 제안된 방법은 대표적인 공개 딥러닝 프레임워크인 Caffe를 수정하여 구현되었으며, 임베디드 GPU를 탑재한 NVIDIA Jetson TK1에서 성능평가 되었다. 실험결과, 대부분의 딥러닝 네트워크에서 뚜렷한 성능향상을 관찰할 수 있었다. 특히, 메모리 사용량이 높은 AlexNet에서 약 33%의 이미지 인식 속도 단축과 50%의 소비 전력량 감소를 관찰할 수 있었다.

심층 네트워크 모델에 기반한 어선 횡동요 시계열 예측 (Fishing Boat Rolling Movement of Time Series Prediction based on Deep Network Model)

  • 김동균;임남균
    • 한국항해항만학회지
    • /
    • 제47권6호
    • /
    • pp.376-385
    • /
    • 2023
  • 통계에 따르면 어선의 전복 사고는 전체 전복 사고의 절반 이상을 차지한다. 이는 미숙한 조업, 기상 악화, 정비 미흡 등 다양한 원인으로 발생할 수 있다. 업계 규모와 영향도, 기술 복잡성, 지역적 다양성 등으로 인해 어선은 상선에 비해 상대적으로 연구가 부족한 실정이다. 본 연구에서는 이미지 기반 딥러닝 모델을 활용하여 어선의 횡동요 시계열을 예측하고자 한다. 이미지 기반 딥러닝은 시계열의 다양한 패턴을 학습하여 높은 성능을 낼 수 있다. 이를 위해 Xception, ResNet50, CRNN의 3가지의 이미지 기반 딥러닝 모델을 활용하였다. Xception과 ResNet50은 각각 177, 184개의 층으로 구성되어 있으며 이에 반해 CRNN은 22개의 비교적 얇은 층으로 구성되어 있다. 실험 결과 Xception 딥러닝 모델이 가장 낮은 0.04291의 sMAPE와 0.0198의 RMSE를 기록하였다. ResNet50과 CRNN은 각각 0.0217, 0.022의 RMSE를 기록하였다. 이를 통해 상대적으로 층이 더 깊은 모델의 정확도가 높음을 확인할 수 있다.