For many years, researchers in face description area have been representing and recognizing faces based on different methods that include subspace discriminant analysis, statistical learning and non-statistics based approach etc. But still automatic face recognition remains an interesting but challenging problem. This paper presents a novel and efficient face image representation method based on Optimized Local Ternary Pattern (OLTP) texture features. The face image is divided into several regions from which the OLTP texture feature distributions are extracted and concatenated into a feature vector that can act as face descriptor. The recognition is performed using nearest neighbor classification method with Chi-square distance as a similarity measure. Extensive experimental results on Yale B, ORL and AR face databases show that OLTP consistently performs much better than other well recognized texture models for face recognition.
High dimensional space is the biggest problem when classification process is carried out, because it takes longer time for computation, so that the costs involved are also expensive. In this research, the facial space generated from homogeneous and non-homogeneous polynomial was proposed to extract the facial image features. The homogeneous and non-homogeneous polynomial-based eigenspaces are the second opinion of the feature extraction of an appearance method to solve non-linear features. The kernel trick has been used to complete the matrix computation on the homogeneous and non-homogeneous polynomial. The weight and projection of the new feature space of the proposed method have been evaluated by using the three face image databases, i.e., the YALE, the ORL, and the UoB. The experimental results have produced the highest recognition rate 94.44%, 97.5%, and 94% for the YALE, ORL, and UoB, respectively. The results explain that the proposed method has produced the higher recognition than the other methods, such as the Eigenface, Fisherface, Laplacianfaces, and O-Laplacianfaces.
As the Internet is used extensively, multimedia information becomes more prevailing and accessible. However, legacy decision support systems rarely mention how to put such multimedia contents into practical use for decision making and support. In particular, no proposals have yet been made on how to integrate the decision technologies and multimedia databases in model management systems. Hence, the aim of this paper is to propose a new model management method to integrating decision technologies and an image database management system to create a multimedia decision support. For this purpose, extended ARG and structured modeling techniques are adopted, to represent image contents and mathematical models respectively. A web-based prototype system is presented to illustrate the feasibility and usability of the methodology.
명함을 이용한 전세계적인 고객 관리 시스템을 구축하기 위해 다국어 명함인식기를 개발하였다. 먼저 다양한 언어의 문자인식 및 학습을 위해 Unicode 기반 문자 이미지 DB를 구축하였으며, 다양한 입력 장치를 통해 획득한 명함 영상에 대하여 정확한 데이터를 얻기 위한 다양한 컬러영상 처리 기술이 적용되었다. 다음에 다층 퍼셉트론 신경망, 언어 유형별 개별 문자인식, 각 언어별 명함에 사용된 필드별 키워드 DB를 이용한 후처리를 적용하여 명함 인식률을 향상시켰다.
Palm image acquisition without contact has advantages in user convenience and hygienic issues, but such images generally display more image variations than those acquired employing a contact plate or pegs. Therefore, it is necessary to develop a palmprint identification method which is robust to affine variations. This study proposes a deep learning approach which can effectively identify contactless palmprints. In general, it is very difficult to collect enough volume of palmprint images for training a deep convolutional neural network(DCNN). So we adopted an approach to use a pretrained DCNN. We designed two new DCNNs based on the VGGNet. One combines the VGGNet with SVM. The other add a shallow network on the middle-level of the VGGNet. The experimental results with two public palmprint databases show that the proposed method performs well not only contact-based palmprints but also contactless palmprints.
International Journal of Internet, Broadcasting and Communication
/
제13권2호
/
pp.187-194
/
2021
This paper presents a margin-based face liveness detection method with behavioral confirmation to prevent spoofing attacks using deep learning techniques. The proposed method provides a possibility to prevent biometric person authentication systems from replay and printed spoofing attacks. For this work, a set of real face images and fake face images was collected and a face liveness detection model is trained on the constructed dataset. Traditional face liveness detection methods exploit the face image covering only the face regions of the human head image. However, outside of this region of interest (ROI) might include useful features such as phone edges and fingers. The proposed face liveness detection method was experimentally tested on the author's own dataset. Collected databases are trained and experimental results show that the trained model distinguishes real face images and fake images correctly.
본 논문은 K-L 변환을 기반으로 한 Fisherface 알고리즘과 fixed graph matching (FGM) 방법을 이용하여 보다 효율적인 얼굴 인식 방법을 제안하고자 한다. 동적 링크 구조 방법 중에 하나인 elastic graph matching (EGM)은 얼굴의 모양 정보뿐만 아니라, 영상 픽셀의 그레이 정보를 동시에 이용하는 하며, 클래스를 구분하는 방법인 Fisherface 알고리즘은 빛의 방향 및 얼굴 표정과 같은 영상의 변화에 대해 강인하다고 알려져 있다. 위의 두 방법으로부터 제안한 알고리즘에서는 영상 그래프의 각 노드에 대해 Fisherface방법을 적용함으로써 레이블된 그래프 벡터의 차원을 줄일 뿐만 아니라 효율적으로 클래스를 구분하기 위한 특징 벡터를 제공한다. 그럼으로써 기존의 EGM 방법에 비해 인식 속도 면에서 상당한 향상 결과를 얻을 수 있었다. 특히, Olivetti Research Laboratory (ORL) 데이터베이스와 Yale 대학 데이터베이스에 대해 실험한 결과 제안한 얼굴 인식 알고리즘은 hold-out 방법에 의한 실험 결과, 평균 90.1%로 기존의 한 방법만을 사용한 것보다 높은 인식률을 보였다.
데이터를 구조화하여 사용하는 관계형 데이터베이스가 현재까지 데이터 관리에 가장 많이 사용되고 있다. 그러나 관계형 데이터베이스는 데이터가 증가되면 데이터를 저장하거나 조회할 때 읽기, 쓰기 연산 수행에 제약 조건이 발생되어 서비스가 느려지는 현상이 나타난다. 또 새로운 업무가 추가되면 데이터베이스 내 데이터는 증가되고 결국 이를 해결하기 위해 하드웨어의 병렬 구성, CPU, 메모리, 네트워크 등 추가적인 인프라 구성을 필요로 하게 된다. 본 논문에서는 관계형 데이터베이스의 데이터 증가로 느려지는 웹 정보서비스 개선을 위해 기존 관계형 데이터베이스의 데이터를 하둡 HDFS로 전송하고 이를 일원화하여 데이터를 재구성한 후 사용자에게 하둡 데이터 처리로 대량의 데이터를 빠르고 안전하게 추출하는 모델을 구현한다. 본 시스템 적용을 위해 웹 기반 민원시스템과 비정형 데이터 처리인 이미지 파일 저장에 본 제안시스템을 적용하였다. 적용결과 관계형 데이터베이스 시스템보다 제안시스템 데이터 처리가 0.4초 더 빠른 결과를 얻을 수 있었고 기존 관계형 데이터베이스와 같은 대량의 데이터를 처리를 빅 데이터 기법인 하둡 데이터 처리로도 웹 정보서비스를 지원이 가능하였다. 또한 하둡은 오픈소스로 제공되어 소프트웨어 구매 비용을 줄여주는 장점이 있으며 기존 관계형 데이터베이스의 데이터 증가로 효율적인 대용량 데이터 처리를 요구하는 조직에게 도움을 줄 수 있을 것이다.
내용기반 영상검색은 영상 내의 정보인 색상, 질감, 형태 등의 특징 값을 추출하여 검색에 이용한다. 본 논문에서는 $8{\times}8$ 이산여현변환, 즉 $8{\times}8$ DCT(Discrete Cosine Transform) 후 얻어지는 DC, AC계수를 이용하여 필터뱅크(filter-bank)를 생성하고, 이를 영상의 내용기반 검색에 이용하는 검색방법을 제안한다. 제안된 방법은 생성된 DCT 필터뱅크에서 DC성분과 주요한 AC성분인 AC01, AC10, AC11 만을 이용하며, DC성분에 대한 양자화를 수행하여 계산량을 최소화한다. 그리고 양자화된 DC성분에 대한 히스토그램 정보를 기반으로 영상 검색에 필요한 특징 값을 산출한다. AC성분에 대해서는 Otsu 이진화를 통하여 개괄적인 형태정보를 취득한 다음 이에 대한 수평/수직 방향으로의 투영 히스토그램을 계산하여 특징 값을 취득한다. 추출된 AC성분의 특징 값은 DC성분의 특징 값과 함께, 특징벡터 빈(feature vector bins)을 구성하여 검색을 수행한다. 실험은 1000장의 데이터베이스를 이용하여 수행 되었으며, 기존의 색상정보를 이용한 검색방법보다 우수한 성능을 보임을 확인하였다.
멀티미디어 데이타베이스와 같은 고차원 응용에서 유사 색인과 검색은 어려운 문제이며, 특히, 다수의 특성을 함께 색인하는 경우에는 더욱 어렵다. 본 논문에서는 고차원 이미지 데이타베이스에서 복합 유사 질의 및 적합성 피드백을 효율적으로 처리하기 위한 새로운 색인 기법인 GB-색인을 제시한다. GB-색인은 각 특성 차원을 독립적으로 처리함으로써 다수의 특성과 다수의 질의 객체를 유연하게 제어한다. 아울러, 비트맵 색인을 통해 데이타베이스에 있는 모든 객체를 비트맵의 집합으로 표현하여 질의를 효율적으로 처리한다. GB-색인의 기술적인 주된 공헌은 다음과 같다: (1) 고차원 데이타를 위한 효율적인 색인, (2) 효율적인 복합 유사 질의 처리, (3) 적합성 피드백을 위한 분리형 질의의 효과적 처리. 실험 결과에 따르면 GB-색인은 순차 탐색 및 VA-파일에 비해 큰 성능 향상을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.