• 제목/요약/키워드: Image Databases

검색결과 238건 처리시간 0.022초

Face Representation and Face Recognition using Optimized Local Ternary Patterns (OLTP)

  • Raja, G. Madasamy;Sadasivam, V.
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.402-410
    • /
    • 2017
  • For many years, researchers in face description area have been representing and recognizing faces based on different methods that include subspace discriminant analysis, statistical learning and non-statistics based approach etc. But still automatic face recognition remains an interesting but challenging problem. This paper presents a novel and efficient face image representation method based on Optimized Local Ternary Pattern (OLTP) texture features. The face image is divided into several regions from which the OLTP texture feature distributions are extracted and concatenated into a feature vector that can act as face descriptor. The recognition is performed using nearest neighbor classification method with Chi-square distance as a similarity measure. Extensive experimental results on Yale B, ORL and AR face databases show that OLTP consistently performs much better than other well recognized texture models for face recognition.

Homogeneous and Non-homogeneous Polynomial Based Eigenspaces to Extract the Features on Facial Images

  • Muntasa, Arif
    • Journal of Information Processing Systems
    • /
    • 제12권4호
    • /
    • pp.591-611
    • /
    • 2016
  • High dimensional space is the biggest problem when classification process is carried out, because it takes longer time for computation, so that the costs involved are also expensive. In this research, the facial space generated from homogeneous and non-homogeneous polynomial was proposed to extract the facial image features. The homogeneous and non-homogeneous polynomial-based eigenspaces are the second opinion of the feature extraction of an appearance method to solve non-linear features. The kernel trick has been used to complete the matrix computation on the homogeneous and non-homogeneous polynomial. The weight and projection of the new feature space of the proposed method have been evaluated by using the three face image databases, i.e., the YALE, the ORL, and the UoB. The experimental results have produced the highest recognition rate 94.44%, 97.5%, and 94% for the YALE, ORL, and UoB, respectively. The results explain that the proposed method has produced the higher recognition than the other methods, such as the Eigenface, Fisherface, Laplacianfaces, and O-Laplacianfaces.

멀티미디어 의사결정지원시스템 구축을 위한 효율적 모형관리기법에 관한 연구 (Effective Model Management Approach to Multimedia Decision Support Systems)

  • 권오병
    • Asia pacific journal of information systems
    • /
    • 제11권2호
    • /
    • pp.181-203
    • /
    • 2001
  • As the Internet is used extensively, multimedia information becomes more prevailing and accessible. However, legacy decision support systems rarely mention how to put such multimedia contents into practical use for decision making and support. In particular, no proposals have yet been made on how to integrate the decision technologies and multimedia databases in model management systems. Hence, the aim of this paper is to propose a new model management method to integrating decision technologies and an image database management system to create a multimedia decision support. For this purpose, extended ARG and structured modeling techniques are adopted, to represent image contents and mathematical models respectively. A web-based prototype system is presented to illustrate the feasibility and usability of the methodology.

  • PDF

Unicode 기반 다국어 명함인식기 개발 (A Development of Unicode-based Multi-lingual Namecard Recognizer)

  • 장동협;이재홍
    • 정보처리학회논문지B
    • /
    • 제16B권2호
    • /
    • pp.117-122
    • /
    • 2009
  • 명함을 이용한 전세계적인 고객 관리 시스템을 구축하기 위해 다국어 명함인식기를 개발하였다. 먼저 다양한 언어의 문자인식 및 학습을 위해 Unicode 기반 문자 이미지 DB를 구축하였으며, 다양한 입력 장치를 통해 획득한 명함 영상에 대하여 정확한 데이터를 얻기 위한 다양한 컬러영상 처리 기술이 적용되었다. 다음에 다층 퍼셉트론 신경망, 언어 유형별 개별 문자인식, 각 언어별 명함에 사용된 필드별 키워드 DB를 이용한 후처리를 적용하여 명함 인식률을 향상시켰다.

사전 학습된 VGGNet 모델을 이용한 비접촉 장문 인식 (Contactless Palmprint Identification Using the Pretrained VGGNet Model)

  • 김민기
    • 한국멀티미디어학회논문지
    • /
    • 제21권12호
    • /
    • pp.1439-1447
    • /
    • 2018
  • Palm image acquisition without contact has advantages in user convenience and hygienic issues, but such images generally display more image variations than those acquired employing a contact plate or pegs. Therefore, it is necessary to develop a palmprint identification method which is robust to affine variations. This study proposes a deep learning approach which can effectively identify contactless palmprints. In general, it is very difficult to collect enough volume of palmprint images for training a deep convolutional neural network(DCNN). So we adopted an approach to use a pretrained DCNN. We designed two new DCNNs based on the VGGNet. One combines the VGGNet with SVM. The other add a shallow network on the middle-level of the VGGNet. The experimental results with two public palmprint databases show that the proposed method performs well not only contact-based palmprints but also contactless palmprints.

A Margin-based Face Liveness Detection with Behavioral Confirmation

  • Tolendiyev, Gabit;Lim, Hyotaek;Lee, Byung-Gook
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.187-194
    • /
    • 2021
  • This paper presents a margin-based face liveness detection method with behavioral confirmation to prevent spoofing attacks using deep learning techniques. The proposed method provides a possibility to prevent biometric person authentication systems from replay and printed spoofing attacks. For this work, a set of real face images and fake face images was collected and a face liveness detection model is trained on the constructed dataset. Traditional face liveness detection methods exploit the face image covering only the face regions of the human head image. However, outside of this region of interest (ROI) might include useful features such as phone edges and fingers. The proposed face liveness detection method was experimentally tested on the author's own dataset. Collected databases are trained and experimental results show that the trained model distinguishes real face images and fake images correctly.

Fisherface 알고리즘과 Fixed Graph Matching을 이용한 얼굴 인식 (Face Recognition Using Fisherface Algorithm and Fixed Graph Matching)

  • 이형지;정재호
    • 대한전자공학회논문지SP
    • /
    • 제38권6호
    • /
    • pp.608-616
    • /
    • 2001
  • 본 논문은 K-L 변환을 기반으로 한 Fisherface 알고리즘과 fixed graph matching (FGM) 방법을 이용하여 보다 효율적인 얼굴 인식 방법을 제안하고자 한다. 동적 링크 구조 방법 중에 하나인 elastic graph matching (EGM)은 얼굴의 모양 정보뿐만 아니라, 영상 픽셀의 그레이 정보를 동시에 이용하는 하며, 클래스를 구분하는 방법인 Fisherface 알고리즘은 빛의 방향 및 얼굴 표정과 같은 영상의 변화에 대해 강인하다고 알려져 있다. 위의 두 방법으로부터 제안한 알고리즘에서는 영상 그래프의 각 노드에 대해 Fisherface방법을 적용함으로써 레이블된 그래프 벡터의 차원을 줄일 뿐만 아니라 효율적으로 클래스를 구분하기 위한 특징 벡터를 제공한다. 그럼으로써 기존의 EGM 방법에 비해 인식 속도 면에서 상당한 향상 결과를 얻을 수 있었다. 특히, Olivetti Research Laboratory (ORL) 데이터베이스와 Yale 대학 데이터베이스에 대해 실험한 결과 제안한 얼굴 인식 알고리즘은 hold-out 방법에 의한 실험 결과, 평균 90.1%로 기존의 한 방법만을 사용한 것보다 높은 인식률을 보였다.

  • PDF

하둡 기반 빅 데이터 기법을 이용한 웹 서비스 데이터 처리 설계 및 구현 (Design and Implementation of an Efficient Web Services Data Processing Using Hadoop-Based Big Data Processing Technique)

  • 김현주
    • 한국산학기술학회논문지
    • /
    • 제16권1호
    • /
    • pp.726-734
    • /
    • 2015
  • 데이터를 구조화하여 사용하는 관계형 데이터베이스가 현재까지 데이터 관리에 가장 많이 사용되고 있다. 그러나 관계형 데이터베이스는 데이터가 증가되면 데이터를 저장하거나 조회할 때 읽기, 쓰기 연산 수행에 제약 조건이 발생되어 서비스가 느려지는 현상이 나타난다. 또 새로운 업무가 추가되면 데이터베이스 내 데이터는 증가되고 결국 이를 해결하기 위해 하드웨어의 병렬 구성, CPU, 메모리, 네트워크 등 추가적인 인프라 구성을 필요로 하게 된다. 본 논문에서는 관계형 데이터베이스의 데이터 증가로 느려지는 웹 정보서비스 개선을 위해 기존 관계형 데이터베이스의 데이터를 하둡 HDFS로 전송하고 이를 일원화하여 데이터를 재구성한 후 사용자에게 하둡 데이터 처리로 대량의 데이터를 빠르고 안전하게 추출하는 모델을 구현한다. 본 시스템 적용을 위해 웹 기반 민원시스템과 비정형 데이터 처리인 이미지 파일 저장에 본 제안시스템을 적용하였다. 적용결과 관계형 데이터베이스 시스템보다 제안시스템 데이터 처리가 0.4초 더 빠른 결과를 얻을 수 있었고 기존 관계형 데이터베이스와 같은 대량의 데이터를 처리를 빅 데이터 기법인 하둡 데이터 처리로도 웹 정보서비스를 지원이 가능하였다. 또한 하둡은 오픈소스로 제공되어 소프트웨어 구매 비용을 줄여주는 장점이 있으며 기존 관계형 데이터베이스의 데이터 증가로 효율적인 대용량 데이터 처리를 요구하는 조직에게 도움을 줄 수 있을 것이다.

여현변환 계수를 이용한 이미지 탐색 알고리즘 (A Image Search Algorithm using Coefficients of The Cosine Transform)

  • 이석한
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.13-21
    • /
    • 2019
  • 내용기반 영상검색은 영상 내의 정보인 색상, 질감, 형태 등의 특징 값을 추출하여 검색에 이용한다. 본 논문에서는 $8{\times}8$ 이산여현변환, 즉 $8{\times}8$ DCT(Discrete Cosine Transform) 후 얻어지는 DC, AC계수를 이용하여 필터뱅크(filter-bank)를 생성하고, 이를 영상의 내용기반 검색에 이용하는 검색방법을 제안한다. 제안된 방법은 생성된 DCT 필터뱅크에서 DC성분과 주요한 AC성분인 AC01, AC10, AC11 만을 이용하며, DC성분에 대한 양자화를 수행하여 계산량을 최소화한다. 그리고 양자화된 DC성분에 대한 히스토그램 정보를 기반으로 영상 검색에 필요한 특징 값을 산출한다. AC성분에 대해서는 Otsu 이진화를 통하여 개괄적인 형태정보를 취득한 다음 이에 대한 수평/수직 방향으로의 투영 히스토그램을 계산하여 특징 값을 취득한다. 추출된 AC성분의 특징 값은 DC성분의 특징 값과 함께, 특징벡터 빈(feature vector bins)을 구성하여 검색을 수행한다. 실험은 1000장의 데이터베이스를 이용하여 수행 되었으며, 기존의 색상정보를 이용한 검색방법보다 우수한 성능을 보임을 확인하였다.

GB-색인: 고차원 데이타의 복합 유사 질의 및 적합성 피드백을 위한 색인 기법 (GB-Index: An Indexing Method for High Dimensional Complex Similarity Queries with Relevance Feedback)

  • 차광호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제32권4호
    • /
    • pp.362-371
    • /
    • 2005
  • 멀티미디어 데이타베이스와 같은 고차원 응용에서 유사 색인과 검색은 어려운 문제이며, 특히, 다수의 특성을 함께 색인하는 경우에는 더욱 어렵다. 본 논문에서는 고차원 이미지 데이타베이스에서 복합 유사 질의 및 적합성 피드백을 효율적으로 처리하기 위한 새로운 색인 기법인 GB-색인을 제시한다. GB-색인은 각 특성 차원을 독립적으로 처리함으로써 다수의 특성과 다수의 질의 객체를 유연하게 제어한다. 아울러, 비트맵 색인을 통해 데이타베이스에 있는 모든 객체를 비트맵의 집합으로 표현하여 질의를 효율적으로 처리한다. GB-색인의 기술적인 주된 공헌은 다음과 같다: (1) 고차원 데이타를 위한 효율적인 색인, (2) 효율적인 복합 유사 질의 처리, (3) 적합성 피드백을 위한 분리형 질의의 효과적 처리. 실험 결과에 따르면 GB-색인은 순차 탐색 및 VA-파일에 비해 큰 성능 향상을 보였다.