• Title/Summary/Keyword: Image Co-registration

Search Result 49, Processing Time 0.027 seconds

Investigation of light stimulated mouse brain activation in high magnetic field fMRI using image segmentation methods

  • Kim, Wook;Woo, Sang-Keun;Kang, Joo Hyun;Lim, Sang Moo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.11-18
    • /
    • 2016
  • Magnetic resonance image (MRI) is widely used in brain research field and medical image. Especially, non-invasive brain activation acquired image technique, which is functional magnetic resonance image (fMRI) is used in brain study. In this study, we investigate brain activation occurred by LED light stimulation. For investigate of brain activation in experimental small animal, we used high magnetic field 9.4T MRI. Experimental small animal is Balb/c mouse, method of fMRI is using echo planar image (EPI). EPI method spend more less time than any other MRI method. For this reason, however, EPI data has low contrast. Due to the low contrast, image pre-processing is very hard and inaccuracy. In this study, we planned the study protocol, which is called block design in fMRI research field. The block designed has 8 LED light stimulation session and 8 rest session. All block is consist of 6 EPI images and acquired 1 slice of EPI image is 16 second. During the light session, we occurred LED light stimulation for 1 minutes 36 seconds. During the rest session, we do not occurred light stimulation and remain the light off state for 1 minutes 36 seconds. This session repeat the all over the EPI scan time, so the total spend time of EPI scan has almost 26 minutes. After acquired EPI data, we performed the analysis of this image data. In this study, we analysis of EPI data using statistical parametric map (SPM) software and performed image pre-processing such as realignment, co-registration, normalization, smoothing of EPI data. The pre-processing of fMRI data have to segmented using this software. However this method has 3 different method which is Gaussian nonparametric, warped modulate, and tissue probability map. In this study we performed the this 3 different method and compared how they can change the result of fMRI analysis results. The result of this study show that LED light stimulation was activate superior colliculus region in mouse brain. And the most higher activated value of segmentation method was using tissue probability map. this study may help to improve brain activation study using EPI and SPM analysis.

Three-dimensional Geometrical Scanning System Using Two Line Lasers (2-라인 레이저를 사용한 3차원 형상 복원기술 개발)

  • Heo, Sang-Hu;Lee, Chung Ghiu
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.5
    • /
    • pp.165-173
    • /
    • 2016
  • In this paper, we propose a three-dimensional (3D) scanning system based on two line lasers. This system uses two line lasers with different wavelengths as light sources. 532-nm and 630-nm line lasers can compensate for missing scan data generated by geometrical occlusion. It also can classify two laser planes by using the red and green channels. For automatic registration of scanning data, we control a stepping motor and divide the motor's rotational degree of freedom into micro-steps. To this end, we design a control printed circuit board for the laser and stepping motor, and use an image processing board. To compute a 3D point cloud, we obtain 200 and 400 images with laser lines and segment lines on the images at different degrees of rotation. The segmented lines are thinned for one-to-one matching of an image pixel with a 3D point.

Use of a Drone for Mapping and Time Series Image Acquisition of Tidal Zones (드론을 활용한 갯벌 지형 및 시계열 정보의 획득)

  • Oh, Jaehong;Kim, Duk-jin;Lee, Hyoseong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.119-125
    • /
    • 2017
  • The mud flat in Korea is the geographical feature generated from the sediment of rivers of Korea and China and it is the important topography for pollution purification and fishing industry. The mud flat is difficult to access such that it requires the aerial survey for the high-resolution spatial information of the area. In this study we used drones instead of the conventional aerial and remote sensing approaches which have shortcomings of costs and revisit times. We carried out GPS-based control point survey, temporal image acquisition using drones, bundle adjustment, stereo image processing for DSM and ortho photo generation, followed by co-registration between the spatio-temporal information.

Efficient Semi-automatic Annotation System based on Deep Learning

  • Hyunseok Lee;Hwa Hui Shin;Soohoon Maeng;Dae Gwan Kim;Hyojeong Moon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.6
    • /
    • pp.267-275
    • /
    • 2023
  • This paper presents the development of specialized software for annotating volume-of-interest on 18F-FDG PET/CT images with the goal of facilitating the studies and diagnosis of head and neck cancer (HNC). To achieve an efficient annotation process, we employed the SE-Norm-Residual Layer-based U-Net model. This model exhibited outstanding proficiency to segment cancerous regions within 18F-FDG PET/CT scans of HNC cases. Manual annotation function was also integrated, allowing researchers and clinicians to validate and refine annotations based on dataset characteristics. Workspace has a display with fusion of both PET and CT images, providing enhance user convenience through simultaneous visualization. The performance of deeplearning model was validated using a Hecktor 2021 dataset, and subsequently developed semi-automatic annotation functionalities. We began by performing image preprocessing including resampling, normalization, and co-registration, followed by an evaluation of the deep learning model performance. This model was integrated into the software, serving as an initial automatic segmentation step. Users can manually refine pre-segmented regions to correct false positives and false negatives. Annotation images are subsequently saved along with their corresponding 18F-FDG PET/CT fusion images, enabling their application across various domains. In this study, we developed a semi-automatic annotation software designed for efficiently generating annotated lesion images, with applications in HNC research and diagnosis. The findings indicated that this software surpasses conventional tools, particularly in the context of HNC-specific annotation with 18F-FDG PET/CT data. Consequently, developed software offers a robust solution for producing annotated datasets, driving advances in the studies and diagnosis of HNC.

MR-based Partial Volume Correction Using Hoffman Brain Phantom Data and Clinical Application (자기공명영상을 이용한 양전자방출단층촬영의 부분용적효과 보정 및 임상적용)

  • 김동현;이상호;정해조;윤미진;이종두;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.203-210
    • /
    • 2003
  • PET (positron emission tomography) permits the investigation of physiological and biochemical processes in vivo. The accuracy of quantifying PET data is affected by its finite spatial resolution, which causes partial volume effects. In this study, we developed a method for partial volume correction using Hoffman phantom PET and MR data, and applied various FWHM (full width at half maximum) levels. We also applied this method to PET images of normal controls and tested for the possibility of clinical application. $^{18}$ F-PET Hoffman phantom images were co-registered to MR slices. The gray matter and white matter regions were then segmented into binary images. Each binary image was convolved by 4, 8, 12, 16 mm FWHM levels. These convolved images of gray and white matter were merged corresponding to the same level of FWHM. The original PET images were then divided by the convolved binary images voxel-by-voxel. These corrected PET images were multiplied by binary images. The corrected PET images were evaluated by analyzing regions of interests, which were drawn on the gray and white matter regions of the original MR image slices. We calculated the ratio of white to gray matter. We also applied this method to the PET images of normal controls. On analyzing the corrected PET images of Hoffman phantom, the ratios of the corrected images increased more than that of the uncorrected images. With the normal controls, the ratio of the corrected images increased more than that of the uncorrected images. The ratio increase of the corrected PET images was lower than that of the corrected phantom PET images. In conclusion, the method developed for partial volume correction in PET data may be clinically applied, although further study may be required for optimal correction.

  • PDF

Effects of Motion Correction for Dynamic $[^{11}C]Raclopride$ Brain PET Data on the Evaluation of Endogenous Dopamine Release in Striatum (동적 $[^{11}C]Raclopride$ 뇌 PET의 움직임 보정이 선조체 내인성 도파민 유리 정량화에 미치는 영향)

  • Lee, Jae-Sung;Kim, Yu-Kyeong;Cho, Sang-Soo;Choe, Yearn-Seong;Kang, Eun-Joo;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Kim, Sang-Eun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.6
    • /
    • pp.413-420
    • /
    • 2005
  • Purpose: Neuroreceptor PET studies require 60-120 minutes to complete and head motion of the subject during the PET scan increases the uncertainty in measured activity. In this study, we investigated the effects of the data-driven head mutton correction on the evaluation of endogenous dopamine release (DAR) in the striatum during the motor task which might have caused significant head motion artifact. Materials and Methods: $[^{11}C]raclopride$ PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a monetary reward for 40 min. Dynamic frames acquired during the equilibrium condition (pre-task: 30-50 min, task: 70-90 min, post-task: 110-120 min) were realigned to the first frame in pre-task condition. Intra-condition registrations between the frames were performed, and average image for each condition was created and registered to the pre-task image (inter-condition registration). Pre-task PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the others. Volumes of interest (VOI) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DAR was calculated as the percent change of BP during and after the task. SPM analyses on the BP parametric images were also performed to explore the regional difference in the effects of head motion on BP and DAR estimation. Results: Changes in position and orientation of the striatum during the PET scans were observed before the head motion correction. BP values at pre-task condition were not changed significantly after the intra-condition registration. However, the BP values during and after the task and DAR were significantly changed after the correction. SPM analysis also showed that the extent and significance of the BP differences were significantly changed by the head motion correction and such changes were prominent in periphery of the striatum. Conclusion: The results suggest that misalignment of MRI-based VOI and the striatum in PET images and incorrect DAR estimation due to the head motion during the PET activation study were significant, but could be remedied by the data-driven head motion correction.

Small animal brain functional MRI study using light stimulation (광자극을 이용한 소동물 뇌 fMRI 연구)

  • Kim, Wook;Park, Yong Sung;Ko, In Ok;Kang, Kyung Joon;Kang, Joo Hyun;Lim, Sang Moo;Woo, Sang-Keun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.295-296
    • /
    • 2016
  • 본 연구에서는 LED 광 자극이 뇌의 어느 영역을 자극하여 신경신호를 전달하는지에 관해서 관찰하고자 연구를 진행하였다. 광 자극에 의한 뇌 영역의 활성변화를 관찰하기 위하여 실험용 소동물과 영상장비인 9.4T MRI를 이용하여 연구를 수행 하였다. 실험용 소동물은 Balb/c 마우스를 이용하였으며 기능적 자기공명영상 획득 방법 중 하나인 에코평면영상 기법을 이용하여 뇌 영상을 획득 하였다. 획득한 영상을 바탕으로 뇌 영역의 자극 정도를 확인해보기 위해 영상처리기법인 재편성(realignment), 일치(co-registration), 표준화(normalization), 평활화(smoothing) 방법으로 영상을 전처리 하고, statistical parametric map (SPM12)을 사용하여 분석하였다. 본 연구에서는 광자극이 소동물 뇌 영역 중 하나인 상구(Superior colliculus)영역과 대뇌의 시각피질 (visual cortex, V1) 영역에서 자극을 일으키는 것을 확인할 수 있었다.

  • PDF

Development of Video Image-Guided Setup (VIGS) System for Tomotherapy: Preliminary Study (단층치료용 비디오 영상기반 셋업 장치의 개발: 예비연구)

  • Kim, Jin Sung;Ju, Sang Gyu;Hong, Chae Seon;Jeong, Jaewon;Son, Kihong;Shin, Jung Suk;Shin, Eunheak;Ahn, Sung Hwan;Han, Youngyih;Choi, Doo Ho
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.85-91
    • /
    • 2013
  • At present, megavoltage computed tomography (MVCT) is the only method used to correct the position of tomotherapy patients. MVCT produces extra radiation, in addition to the radiation used for treatment, and repositioning also takes up much of the total treatment time. To address these issues, we suggest the use of a video image-guided setup (VIGS) system for correcting the position of tomotherapy patients. We developed an in-house program to correct the exact position of patients using two orthogonal images obtained from two video cameras installed at $90^{\circ}$ and fastened inside the tomotherapy gantry. The system is programmed to make automatic registration possible with the use of edge detection of the user-defined region of interest (ROI). A head-and-neck patient is then simulated using a humanoid phantom. After taking the computed tomography (CT) image, tomotherapy planning is performed. To mimic a clinical treatment course, we used an immobilization device to position the phantom on the tomotherapy couch and, using MVCT, corrected its position to match the one captured when the treatment was planned. Video images of the corrected position were used as reference images for the VIGS system. First, the position was repeatedly corrected 10 times using MVCT, and based on the saved reference video image, the patient position was then corrected 10 times using the VIGS method. Thereafter, the results of the two correction methods were compared. The results demonstrated that patient positioning using a video-imaging method ($41.7{\pm}11.2$ seconds) significantly reduces the overall time of the MVCT method ($420{\pm}6$ seconds) (p<0.05). However, there was no meaningful difference in accuracy between the two methods (x=0.11 mm, y=0.27 mm, z=0.58 mm, p>0.05). Because VIGS provides a more accurate result and reduces the required time, compared with the MVCT method, it is expected to manage the overall tomotherapy treatment process more efficiently.

Improvement of 2-pass DInSAR-based DEM Generation Method from TanDEM-X bistatic SAR Images (TanDEM-X bistatic SAR 영상의 2-pass 위성영상레이더 차분간섭기법 기반 수치표고모델 생성 방법 개선)

  • Chae, Sung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.847-860
    • /
    • 2020
  • The 2-pass DInSAR (Differential Interferometric SAR) processing steps for DEM generation consist of the co-registration of SAR image pair, interferogram generation, phase unwrapping, calculation of DEM errors, and geocoding, etc. It requires complicated steps, and the accuracy of data processing at each step affects the performance of the finally generated DEM. In this study, we developed an improved method for enhancing the performance of the DEM generation method based on the 2-pass DInSAR technique of TanDEM-X bistatic SAR images was developed. The developed DEM generation method is a method that can significantly reduce both the DEM error in the unwrapped phase image and that may occur during geocoding step. The performance analysis of the developed algorithm was performed by comparing the vertical accuracy (Root Mean Square Error, RMSE) between the existing method and the newly proposed method using the ground control point (GCP) generated from GPS survey. The vertical accuracy of the DInSAR-based DEM generated without correction for the unwrapped phase error and geocoding error is 39.617 m. However, the vertical accuracy of the DEM generated through the proposed method is 2.346 m. It was confirmed that the DEM accuracy was improved through the proposed correction method. Through the proposed 2-pass DInSAR-based DEM generation method, the SRTM DEM error observed by DInSAR was compensated for the SRTM 30 m DEM (vertical accuracy 5.567 m) used as a reference. Through this, it was possible to finally create a DEM with improved spatial resolution of about 5 times and vertical accuracy of about 2.4 times. In addition, the spatial resolution of the DEM generated through the proposed method was matched with the SRTM 30 m DEM and the TanDEM-X 90m DEM, and the vertical accuracy was compared. As a result, it was confirmed that the vertical accuracy was improved by about 1.7 and 1.6 times, respectively, and more accurate DEM generation was possible with the proposed method. If the method derived in this study is used to continuously update the DEM for regions with frequent morphological changes, it will be possible to update the DEM effectively in a short time at low cost.