본 논문에서는 피부 색소 침착 영역을 검출하고 침착 정도를 측정하는 알고리즘을 제안한다. 제안한 알고리즘에서는 먼저 훈련 영상(training image)의 통계적 분석을 통해 피부 영역에 대한 GMM-EM 클러스터링 기반 컬러 모델을 구축하고 이를 통해 피부 영역을 추출한 후, 형태학적 처리(morphological processing)를 통해 피부 영역에 존재하는 잡음을 제거한다. 이후 ICA (independent component analysis) 알고리즘을 통해 피부 영역을 헤모글로빈 및 멜라닌 성분으로 분리하고, 각 성분에 대한 투영 변환 블록 계수에 의하여 색소 침착 영역 및 크기를 결정한다. 성능 평가를 위한 모의실험으로부터 제안한 색소 침착 검출 알고리즘은 피부 색소 침착 영역의 크기 및 침착 정도를 정확하게 검출할 수 있음을 확인하였다.
전자해도는 종이해도 간행을 위한 수치해도 기반으로 편집되며, 그리드 형식의 격자형 체계로 간행되고 있다. 이에 따라 전자해도에 포함되는 수심정보의 밀집도가 일관적이지 못하여 이에 대한 개선이 요구되었다. 본 연구에서는 위성영상 분류기법 중 K-Means 클러스터링 기법과 ISODATA 클러스터링 기법을 검토 하였으며, 이를 전자해도 수심정보에 맞게 수정 및 적용 하였다. 개발결과는 전자해도 로딩 부분, 수심 밀집도 개선 부분, 전자해도 쓰기 부분으로 구성되며, 알고리즘 적용 결과에 따라 수심 밀집도 개선된 결과를 확인 할 수 있었다.
본 논문에서는 배경의 움직임이 유발되는 능동 CCD 카메라를 통하여 실시간으로 포착되는 영상 데이터를 대상으로 카메라의 사전 설치 정보나 좌표 보정(calibration) 없이 강체(rigid body) 혹은 비 강체(non-rigid body)의 움직이는 물체를 추출하고 이의 이동 방향을 판단하여, 추적하는 효율적인 알고리즘을 제안한다. 이동 물체의 영역분할을 위하여 동체의 형태를 규정하는 특징 점을 추출하고, 시간에 따른 특징 점의 이동 벡터로 구성된 특정 플로우 필드(feature flow field)를 구한 후 이들을 다차원 특정 공간상에서 군집화(clustering)함으로써 동체를 추출한다. 제안하는 IRMAS(lncremenatal Rotational Minimum Angle Search)에 의하여 군집화된 특정점들의 볼록 다각형(convex hull)올 구함으로써 이동 물체의 개괄적인 외곽 형태를 재 구성한다. 또한, 이동 궤적의 갑작스러운 변화를 가져올 수 있는 동작 특성을 가지는 이동 물체의 효과적인 추적을 목적으로 개선된 선형 예측기를 사용하였다. 이동 궤적 예측기는 기존의 선형 예측기의 차수를 이동의 변화도에 따라 적응적으로 조정함으로써 예측 오차를 감소시켜, 빠른 속도로 이동 궤적에 수렴한다.
본 논문에서는 얼굴의 속성에 따라 각각의 알고리즘의 인식 성능이 달라지는 점에 착안해서, 다양한 얼굴 데이터를 클러스터링한 후 가장 효과적인 알고리즘을 선택적으로 사용하여 인식 성능을 높이는 방법을 제안하였다. 인식기 융합 문제는 인식결과를 결정짓는 문제에서 많이 사용하는 방식이며, Kuncheva는 데이터를 기준을 두어 영역별로 구분한 후. 각 데이터 영역에 맞는 분류기가 어떠한 것인가를 찾는 방법을 제안하였다. 분류기 여러개를 선택하여 사용할 경우, 어떻게 결과를 융합할것 인가에 대한 문제는 제시하지 않고 있다. 단지. 각 영역에 대하여, 어떠한 분류기를 사용하는 것이 좋을 것인가에 대한 문제만을 해결한다. 어떠한 영역의 데이터는 여러개의 분류기를 적용해도 된다는 결론하에, 각 분류기가 유사한 성능을 나타내므로, 어떠한 분류기를 사용하든 무관하다는 방향으로 전개한다. 따라서 본 논문에서는 각 데이터 영역별로 어떠한 분류기가 좋을 것인지 판단하며, 각 분류기에서 나온 결과값들을 융합하는 방법에 대하여 제안한다.
칼라 영상은 센서 잡음이나 채널 전송 에러에 의해 생기는 잡음에 의해 자주 오염되어진다. 이러한 칼라 잡음을 제거하기 위해 벡터 미디안, 벡터 $\alpha$-trimmed 평균 필터 등 여러 형태의 필터들이 개발되어져 왔다. 본 논문에서 제안된 클러스터 필터는 잡음에 오염된 환경 하에서 강건한 소속함수 값을 얻을 수 있는 가능적 c-mean 클러스터링 방법을 이용하였다. 또한, 본 논문에서는 혼합된 잡음에서 우수한 벡터 $\alpha$-trimmed 평균 필터를 개선하여, 원도우내의 화소중 중심에 위치한 화소에는 더 가중치를 부여하여 가중화 된 평균 필터링을 수행하는 가중화 벡터$\alpha$-trimmed 평균 필터를 제안하였다. 본 논문에서는 칼라 잡음이 발생한 영상에서 제안된 필터들의 성능을 평가하기 위해 칼라 잡음 발생기를 구현하였으며, 실험 결과는 NCD 척도 및 관측자의 시각에 의해 평가되었다. 실험 결과 제안된 퍼지 클러스터 필터는 NCD 관점에서 기존의 필터들에 비해 혼합된 잡음에서 우수한 성능을 보였고, 제안된 가중화된 벡터 $\alpha$-trimmed 평균 필터는 벡터 $\alpha$-trimmed 평균 필터에 비해 어떠한 잡음 하에서도 양호한 결과를 보였다.
칼라코드는 획득된 영상에서 칼라의 심각한 왜곡 때문에 그 응용 확장에 어려움이 있었다. 칼라 인식에서 칼라 왜곡의 영향을 줄이기 위해서는 규칙적으로 샘플링된 몇 개의 화소들을 이용하기 보다는 가능한한 각 칼라 영역에서 많은 화소들을 통계적으로 처리하는 것이 더 바람직하다. 이를 위해서는 일반적으로 에지 검출이 필요한 분할이 필요하다. 그러나, 칼라코드에서 에지들은 분할을 불완전하게 만드는 지퍼 효과나 반사와 같은 다양한 왜곡에 의해 끊어질 수 있고, 에지 연결 또한 어려운 처리 과정이다. 본 논문에서는 칼라 인식에서 칼라 왜곡의 영향을 줄이기 위한 좀 더 효과적인 방법은 분할을 위한 정확한 에지 검출을 배제하는 방법으로 k-평균 클러스트링 알고리즘을 적용하였다. 또한, 칼라코드 검출에서 6개의 안전한 칼라와 그레이 성질 모두 이용하였다. 실험은 4M-화소 크기의 야외영상 144장에 대해 수행되었다. 제안한 방법은 테스트 영상에 대해서 100%의 칼라코드 검출율을 나타내었고, 검출된 코드에 대해서는 99% 이상의 평균 칼라 인식 정확도를 보였다. 여기서 가장 높은 정확도를 보인 캐니 에지 검출법을 사용한 경우 91.28%로 나타났다.
클러스터링은 주어진 데이타 집합의 패턴을 비슷한 성질을 가지는 그룹으로 나누어 패턴 상호간의 관계를 정립하기 위한 방법론이다. 이러한 클러스터링 기법을 위하여 많은 알고리즘이 개발되었고, 패턴인식과 영상처리 등의 여러 공학영역에 적용되어 왔다. 대부분의 실세계 데이타는 그 경계가 명확하지 않으므로 그 특성을 보다 정확히 반영하기 위하여 퍼지이론이 도입되었다.이와 같은 클러스터 분석 방법은 보다 적절히 으용하기 위하여 클러스터링의 적절성을 평가하기 위한 방법론과 함께 연구되어야 한다. 이를 위하여 각 데이타 패턴이 얼마나 잘 분류되었는지를 수학적으로 계산하기 위한 함수들이 제안되었다. 그러나 클로스터 타당성 문제는 주어지 클러스터링 방법론의 특성, 그 알고리즘에서 사용한 파라메터의 성질, 주어진 입력 데이타 집합의 특성 등 여러 복잡한 상황을 포함하고 있으므로 기존의 연구에서와 같이 하나의 함수를 이용하여 해결하기는 어렵다. 그러므로 본 논문에서는 기존에 연구되어온 타당성 측정 함수를 조사하고 그의 단점을 고찰하여 이를 해결하기 위한 방법으로 4가지성능 측정자를 제안하고 이의 결합에 의하여 형성된 클러스터 타당성의 정도를 구하는 방법론을 제시하고자 한다. 또한 이러한 방법은 퍼지 클러스터링을 위한 학습 알고리즘과 결함하여 클러스터의 수나 데이타의 분포에 대한 정보없이 최적 클러스터를 찾아주는 방법에 응용될 수 있음을 보인다.
제조 산업에서의 이상치 검출은 생산품의 품질과 운영비용을 절감하기 위한 중요한 요소로 최근 딥러닝을 사용하여 자동화되고 있다. 이상치 검출을 위한 딥러닝 기법에는 CNN이 있으며, CNN을 계층적으로 구성할 경우 단일 CNN 모델에 비해 상대적으로 성능의 향상을 보일 수 있다는 것이 많은 선행 연구에서 나타났다. 이에 MVTec-AD 데이터셋을 이용하여 계층 CNN이 다중 클래스 이상치 판별 문제에 대해 효과적인지를 탐구하고자 하였다. 실험 결과 단일 CNN의 정확도는 0.7715, 계층 CNN의 정확도는 0.7838로 다중 클래스 이상치 판별 문제에 있어 계층 CNN 방식 접근이 다중 클래스 이상치 탐지 문제에서 알고리즘의 성능을 향상할 수 있음을 확인할 수 있었다. 계층 CNN은 모델과 파라미터의 개수와 리소스의 사용이 단일 CNN에 비하여 기하급수적으로 증가한다는 단점이 존재한다. 이에 계층 CNN의 장점을 유지하며 사용 리소스를 절약하고자 하였고 K-means, GMM, 계층적 클러스터링 알고리즘을 통해 제작한 새로운 클래스를 이용해 계층 CNN을 구성하여 각각 정확도 0.7930, 0.7891, 0.7936의 결과를 얻을 수 있었다. 이를 통해 Clustering 알고리즘을 사용하여 적절히 물체를 분류할 경우 물체에 따른 개별 상태 판단 모델을 제작하는 것과 비슷하거나 더 좋은 성능을 내며 리소스 사용을 줄일 수 있음을 확인할 수 있었다.
디스플레이 기기들이 고도화 되면서, 사용자의 목적에 부합하는 영상이 요구되어져 가고 있다. 따라서, 3D 디스플레이에서 필요하게 되는 깊이 정보가 요구될 때 디스플레이 기기들은 객체 기반의 영상 정보를 제공 할 수 있어야 한다. 따라서, 본 논문에서 깊이 정보 생성을 위한 히스토그램 기반의 영상분할 알고리즘을 제안한다. 기존의 K 군집 알고리즘에서 군집의 수를 파라미터화 하여, 영상에 적응적으로 군집 수를 결정할 수 없게 되는 한계를 지닌다. 또한, k 군집 알고리즘이 지니고 있던 지역 최소점에 빠져 영상 분할에 있어 과분할을 야기하는 지역 최소점에 빠지게 되는 경향이 있다. 반면에, 제안하는 알고리즘은 분할해야할 군집 선정에서 계산량을 고려하여 적응적으로 선택 가능할 수 있게 하는 히스토그램 기반의 알고리즘을 설계하여 적응적으로 선택 가능하게 하였다. 기존 알고리즘이 가지고 있었던 지역 최소점에 빠지지 않도록 방지하게 하여 결과 영상에서 객체 기반의 결과를 보여줄 수 있도록 설계 했다. 이 후 연결요소 알고리즘을 통해 과분할 요소를 제거했다. 따라서, 제안하는 알고리즘은 객체 기반의 깊이 정보 결과를 보여 줄 뿐만 아니라, 벤치마크 방법에 비해 확률 랜드 인덱스, 분할 커버링 측면에서도 각각 벤치마크 방법에 비해 0.017, 0.051으로 향상된 결과치를 보여준다.
비닐포장 하부에 위치한 콩의 생장 초기에 발생한 초엽을 인식하기 위한 연구를 수행중이다. 선행 연구에서 비닐포장에 접촉한 콩 초엽으로 인해 비닐포장 상부 표면의 열 반응 분포에 변화가 있음을 발견하였다. 현장에서 주행 중에 콩 초엽의 위치를 실시간으로 인식하고 연동된 선형 또는 회전형 엑츄에이터를 제어하여 정확한 위치에 천공을 수행하기 위해서는 계측 시스템과 제어 시스템간의 시간적 차이를 최소할 수 있는 실시간 신호 처리 기술이 필수적이다. 선행 연구에서 사용한 다중 IR 센서의 분해능은 $16{\times}4pixel$이며 주파수는 3 Hz로, 폭이 30cm 내외인 비닐포장 상부의 정밀 분석에 한계가 있음을 발견하였다. 이를 해결하기 위하여 분해능과 계측 주기를 개선할 수 있는 초소형 ($1cm{\times}1cm{\times}1cm$) 열화상 센서를 이용하였다. LWIR(Longwave infrared)영역에 해당하는 $8{\mu}m{\sim}14{\mu}m$의 영역에서 $0.05^{\circ}C$의 분해능을 보이는 $ Lepton^{TM}$ (500-0690-00, FLIR, Goleta, CA)모델을 사용하였다. 프레임당 $80{\times}60$ 픽셀의 정보가 2 Byte의 단위로 계측이 되며 9 Hz의 주파수로 대상면의 열 분포를 측정할 수 있다. 이론적으로 초당 정보 전송량은 86,400 Byte ($80{\times}60{\times}2{\times}9$)이며, 1 m를 진행하는 주행형 천공기에 적용할 경우 1 프레임당 10cm 정도의 면적을 측정하므로, 최대 위치 판정 분해능은 약 10 cm / 60 pixel = 0.17 cm/pixel로 상대적으로 정밀한 위치 판별이 가능하다. $80{\times}60{\times}2Byet$의 정보를 0.1초 이내에 분석해야 하는 기술적 과제를 해결하기 위하여 천공 작업기에 적합한 상용 SBC(Single board computer)의 클럭 속도(1 Ghz)로 처리 가능한 공간 분포 분석 알고리즘을 개발하였다. 전체 이미지 도메인을 한 번에 분석하는데 소요되는 시간을 최소화하기 위하여 공간정보 행렬을 균등히 배분하고 별도의 프로세서에서 Feature를 분석한 후 개별 프로세서의 결과를 경합식으로 판정하는 기술을 연구하였다. 오픈 소스인 MPICH(www.mpich.org) 라이브러리를 이용하여 개발한 신호 분석 프로그램을 클러스터링으로 연동된 개별 코어에 설치/수행 하였다. 2D 행렬인 열분포 정보를 공간적으로 균등 분배하여 개별 코어에서 행렬의 Spatial domain analysis를 수행하였다. $20{\times}20$의 클러스터링 단위를 이용할 경우 총 12개의 코어가 필요하였으며, 초당 10회의 연산이 가능함을 확인하였다. 병렬 클러스터링 기술을 이용하여 1m/s 내외의 주행 속도에 대응이 가능한 비닐포장 상부 열 분포 분석 시스템을 구현하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.