• 제목/요약/키워드: Image Clustering

검색결과 601건 처리시간 0.024초

투영 변환 블록 계수를 이용한 피부 색소 침착 검출 (Skin Pigmentation Detection Using Projection Transformed Block Coefficient)

  • 류양;이석환;권성근;권기룡
    • 한국멀티미디어학회논문지
    • /
    • 제16권9호
    • /
    • pp.1044-1056
    • /
    • 2013
  • 본 논문에서는 피부 색소 침착 영역을 검출하고 침착 정도를 측정하는 알고리즘을 제안한다. 제안한 알고리즘에서는 먼저 훈련 영상(training image)의 통계적 분석을 통해 피부 영역에 대한 GMM-EM 클러스터링 기반 컬러 모델을 구축하고 이를 통해 피부 영역을 추출한 후, 형태학적 처리(morphological processing)를 통해 피부 영역에 존재하는 잡음을 제거한다. 이후 ICA (independent component analysis) 알고리즘을 통해 피부 영역을 헤모글로빈 및 멜라닌 성분으로 분리하고, 각 성분에 대한 투영 변환 블록 계수에 의하여 색소 침착 영역 및 크기를 결정한다. 성능 평가를 위한 모의실험으로부터 제안한 색소 침착 검출 알고리즘은 피부 색소 침착 영역의 크기 및 침착 정도를 정확하게 검출할 수 있음을 확인하였다.

전자해도 수심 밀집도 개선에 관한 연구 (A Study on improvement of sounding density of ENCs)

  • 오세웅;박종민;서상현;이문진;전태병
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2011년도 춘계학술대회
    • /
    • pp.34-36
    • /
    • 2011
  • 전자해도는 종이해도 간행을 위한 수치해도 기반으로 편집되며, 그리드 형식의 격자형 체계로 간행되고 있다. 이에 따라 전자해도에 포함되는 수심정보의 밀집도가 일관적이지 못하여 이에 대한 개선이 요구되었다. 본 연구에서는 위성영상 분류기법 중 K-Means 클러스터링 기법과 ISODATA 클러스터링 기법을 검토 하였으며, 이를 전자해도 수심정보에 맞게 수정 및 적용 하였다. 개발결과는 전자해도 로딩 부분, 수심 밀집도 개선 부분, 전자해도 쓰기 부분으로 구성되며, 알고리즘 적용 결과에 따라 수심 밀집도 개선된 결과를 확인 할 수 있었다.

  • PDF

특징 기반 움직임 플로우를 이용한 이동 물체의 검출 및 추적 (Moving object segmentation and tracking using feature based motion flow)

  • 이규원;김학수;전준근;박규태
    • 한국통신학회논문지
    • /
    • 제23권8호
    • /
    • pp.1998-2009
    • /
    • 1998
  • 본 논문에서는 배경의 움직임이 유발되는 능동 CCD 카메라를 통하여 실시간으로 포착되는 영상 데이터를 대상으로 카메라의 사전 설치 정보나 좌표 보정(calibration) 없이 강체(rigid body) 혹은 비 강체(non-rigid body)의 움직이는 물체를 추출하고 이의 이동 방향을 판단하여, 추적하는 효율적인 알고리즘을 제안한다. 이동 물체의 영역분할을 위하여 동체의 형태를 규정하는 특징 점을 추출하고, 시간에 따른 특징 점의 이동 벡터로 구성된 특정 플로우 필드(feature flow field)를 구한 후 이들을 다차원 특정 공간상에서 군집화(clustering)함으로써 동체를 추출한다. 제안하는 IRMAS(lncremenatal Rotational Minimum Angle Search)에 의하여 군집화된 특정점들의 볼록 다각형(convex hull)올 구함으로써 이동 물체의 개괄적인 외곽 형태를 재 구성한다. 또한, 이동 궤적의 갑작스러운 변화를 가져올 수 있는 동작 특성을 가지는 이동 물체의 효과적인 추적을 목적으로 개선된 선형 예측기를 사용하였다. 이동 궤적 예측기는 기존의 선형 예측기의 차수를 이동의 변화도에 따라 적응적으로 조정함으로써 예측 오차를 감소시켜, 빠른 속도로 이동 궤적에 수렴한다.

  • PDF

효과적인 얼굴 인식을 위한 인식기 선택 (Classifier Selection for Efficient Face Recognition)

  • 남미영;이필규
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.453-456
    • /
    • 2005
  • 본 논문에서는 얼굴의 속성에 따라 각각의 알고리즘의 인식 성능이 달라지는 점에 착안해서, 다양한 얼굴 데이터를 클러스터링한 후 가장 효과적인 알고리즘을 선택적으로 사용하여 인식 성능을 높이는 방법을 제안하였다. 인식기 융합 문제는 인식결과를 결정짓는 문제에서 많이 사용하는 방식이며, Kuncheva는 데이터를 기준을 두어 영역별로 구분한 후. 각 데이터 영역에 맞는 분류기가 어떠한 것인가를 찾는 방법을 제안하였다. 분류기 여러개를 선택하여 사용할 경우, 어떻게 결과를 융합할것 인가에 대한 문제는 제시하지 않고 있다. 단지. 각 영역에 대하여, 어떠한 분류기를 사용하는 것이 좋을 것인가에 대한 문제만을 해결한다. 어떠한 영역의 데이터는 여러개의 분류기를 적용해도 된다는 결론하에, 각 분류기가 유사한 성능을 나타내므로, 어떠한 분류기를 사용하든 무관하다는 방향으로 전개한다. 따라서 본 논문에서는 각 데이터 영역별로 어떠한 분류기가 좋을 것인지 판단하며, 각 분류기에서 나온 결과값들을 융합하는 방법에 대하여 제안한다.

  • PDF

퍼지 클러스터 필터와 가중화 된 벡터 $\alpha$-trimmed 평균 필터를 이용한 칼라 영상처리 (Color Image Processing using Fuzzy Cluster Filters and Weighted Vector $\alpha$-trimmed Mean Filter)

  • 엄경배;이준환
    • 한국통신학회논문지
    • /
    • 제24권9B호
    • /
    • pp.1731-1741
    • /
    • 1999
  • 칼라 영상은 센서 잡음이나 채널 전송 에러에 의해 생기는 잡음에 의해 자주 오염되어진다. 이러한 칼라 잡음을 제거하기 위해 벡터 미디안, 벡터 $\alpha$-trimmed 평균 필터 등 여러 형태의 필터들이 개발되어져 왔다. 본 논문에서 제안된 클러스터 필터는 잡음에 오염된 환경 하에서 강건한 소속함수 값을 얻을 수 있는 가능적 c-mean 클러스터링 방법을 이용하였다. 또한, 본 논문에서는 혼합된 잡음에서 우수한 벡터 $\alpha$-trimmed 평균 필터를 개선하여, 원도우내의 화소중 중심에 위치한 화소에는 더 가중치를 부여하여 가중화 된 평균 필터링을 수행하는 가중화 벡터$\alpha$-trimmed 평균 필터를 제안하였다. 본 논문에서는 칼라 잡음이 발생한 영상에서 제안된 필터들의 성능을 평가하기 위해 칼라 잡음 발생기를 구현하였으며, 실험 결과는 NCD 척도 및 관측자의 시각에 의해 평가되었다. 실험 결과 제안된 퍼지 클러스터 필터는 NCD 관점에서 기존의 필터들에 비해 혼합된 잡음에서 우수한 성능을 보였고, 제안된 가중화된 벡터 $\alpha$-trimmed 평균 필터는 벡터 $\alpha$-trimmed 평균 필터에 비해 어떠한 잡음 하에서도 양호한 결과를 보였다.

  • PDF

k-평균 클러스터링 알고리즘 기반의 영상 분할을 이용한 칼라코드 검출 및 인식 (Color Code Detection and Recognition Using Image Segmentation Based on k-Means Clustering Algorithm)

  • 김태우;유현중
    • 한국산학기술학회논문지
    • /
    • 제7권6호
    • /
    • pp.1100-1105
    • /
    • 2006
  • 칼라코드는 획득된 영상에서 칼라의 심각한 왜곡 때문에 그 응용 확장에 어려움이 있었다. 칼라 인식에서 칼라 왜곡의 영향을 줄이기 위해서는 규칙적으로 샘플링된 몇 개의 화소들을 이용하기 보다는 가능한한 각 칼라 영역에서 많은 화소들을 통계적으로 처리하는 것이 더 바람직하다. 이를 위해서는 일반적으로 에지 검출이 필요한 분할이 필요하다. 그러나, 칼라코드에서 에지들은 분할을 불완전하게 만드는 지퍼 효과나 반사와 같은 다양한 왜곡에 의해 끊어질 수 있고, 에지 연결 또한 어려운 처리 과정이다. 본 논문에서는 칼라 인식에서 칼라 왜곡의 영향을 줄이기 위한 좀 더 효과적인 방법은 분할을 위한 정확한 에지 검출을 배제하는 방법으로 k-평균 클러스트링 알고리즘을 적용하였다. 또한, 칼라코드 검출에서 6개의 안전한 칼라와 그레이 성질 모두 이용하였다. 실험은 4M-화소 크기의 야외영상 144장에 대해 수행되었다. 제안한 방법은 테스트 영상에 대해서 100%의 칼라코드 검출율을 나타내었고, 검출된 코드에 대해서는 99% 이상의 평균 칼라 인식 정확도를 보였다. 여기서 가장 높은 정확도를 보인 캐니 에지 검출법을 사용한 경우 91.28%로 나타났다.

  • PDF

퍼지 성능 측정자를 결합한 최적 클러스터 분석방법 (An Optimal Cluster Analysis Method with Fuzzy Performance Measures)

  • 이현숙;오경환
    • 한국지능시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.81-88
    • /
    • 1996
  • 클러스터링은 주어진 데이타 집합의 패턴을 비슷한 성질을 가지는 그룹으로 나누어 패턴 상호간의 관계를 정립하기 위한 방법론이다. 이러한 클러스터링 기법을 위하여 많은 알고리즘이 개발되었고, 패턴인식과 영상처리 등의 여러 공학영역에 적용되어 왔다. 대부분의 실세계 데이타는 그 경계가 명확하지 않으므로 그 특성을 보다 정확히 반영하기 위하여 퍼지이론이 도입되었다.이와 같은 클러스터 분석 방법은 보다 적절히 으용하기 위하여 클러스터링의 적절성을 평가하기 위한 방법론과 함께 연구되어야 한다. 이를 위하여 각 데이타 패턴이 얼마나 잘 분류되었는지를 수학적으로 계산하기 위한 함수들이 제안되었다. 그러나 클로스터 타당성 문제는 주어지 클러스터링 방법론의 특성, 그 알고리즘에서 사용한 파라메터의 성질, 주어진 입력 데이타 집합의 특성 등 여러 복잡한 상황을 포함하고 있으므로 기존의 연구에서와 같이 하나의 함수를 이용하여 해결하기는 어렵다. 그러므로 본 논문에서는 기존에 연구되어온 타당성 측정 함수를 조사하고 그의 단점을 고찰하여 이를 해결하기 위한 방법으로 4가지성능 측정자를 제안하고 이의 결합에 의하여 형성된 클러스터 타당성의 정도를 구하는 방법론을 제시하고자 한다. 또한 이러한 방법은 퍼지 클러스터링을 위한 학습 알고리즘과 결함하여 클러스터의 수나 데이타의 분포에 대한 정보없이 최적 클러스터를 찾아주는 방법에 응용될 수 있음을 보인다.

  • PDF

다중 클래스 이상치 탐지를 위한 계층 CNN의 효과적인 클래스 분할 방법 (Effective Classification Method of Hierarchical CNN for Multi-Class Outlier Detection)

  • 김지현;이세영;김예림;안서영;박새롬
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.81-84
    • /
    • 2022
  • 제조 산업에서의 이상치 검출은 생산품의 품질과 운영비용을 절감하기 위한 중요한 요소로 최근 딥러닝을 사용하여 자동화되고 있다. 이상치 검출을 위한 딥러닝 기법에는 CNN이 있으며, CNN을 계층적으로 구성할 경우 단일 CNN 모델에 비해 상대적으로 성능의 향상을 보일 수 있다는 것이 많은 선행 연구에서 나타났다. 이에 MVTec-AD 데이터셋을 이용하여 계층 CNN이 다중 클래스 이상치 판별 문제에 대해 효과적인지를 탐구하고자 하였다. 실험 결과 단일 CNN의 정확도는 0.7715, 계층 CNN의 정확도는 0.7838로 다중 클래스 이상치 판별 문제에 있어 계층 CNN 방식 접근이 다중 클래스 이상치 탐지 문제에서 알고리즘의 성능을 향상할 수 있음을 확인할 수 있었다. 계층 CNN은 모델과 파라미터의 개수와 리소스의 사용이 단일 CNN에 비하여 기하급수적으로 증가한다는 단점이 존재한다. 이에 계층 CNN의 장점을 유지하며 사용 리소스를 절약하고자 하였고 K-means, GMM, 계층적 클러스터링 알고리즘을 통해 제작한 새로운 클래스를 이용해 계층 CNN을 구성하여 각각 정확도 0.7930, 0.7891, 0.7936의 결과를 얻을 수 있었다. 이를 통해 Clustering 알고리즘을 사용하여 적절히 물체를 분류할 경우 물체에 따른 개별 상태 판단 모델을 제작하는 것과 비슷하거나 더 좋은 성능을 내며 리소스 사용을 줄일 수 있음을 확인할 수 있었다.

  • PDF

깊이정보 생성을 위한 영상 분할에 관한 연구 (A study on image segmentation for depth map generation)

  • 임재성
    • 한국산학기술학회논문지
    • /
    • 제18권10호
    • /
    • pp.707-716
    • /
    • 2017
  • 디스플레이 기기들이 고도화 되면서, 사용자의 목적에 부합하는 영상이 요구되어져 가고 있다. 따라서, 3D 디스플레이에서 필요하게 되는 깊이 정보가 요구될 때 디스플레이 기기들은 객체 기반의 영상 정보를 제공 할 수 있어야 한다. 따라서, 본 논문에서 깊이 정보 생성을 위한 히스토그램 기반의 영상분할 알고리즘을 제안한다. 기존의 K 군집 알고리즘에서 군집의 수를 파라미터화 하여, 영상에 적응적으로 군집 수를 결정할 수 없게 되는 한계를 지닌다. 또한, k 군집 알고리즘이 지니고 있던 지역 최소점에 빠져 영상 분할에 있어 과분할을 야기하는 지역 최소점에 빠지게 되는 경향이 있다. 반면에, 제안하는 알고리즘은 분할해야할 군집 선정에서 계산량을 고려하여 적응적으로 선택 가능할 수 있게 하는 히스토그램 기반의 알고리즘을 설계하여 적응적으로 선택 가능하게 하였다. 기존 알고리즘이 가지고 있었던 지역 최소점에 빠지지 않도록 방지하게 하여 결과 영상에서 객체 기반의 결과를 보여줄 수 있도록 설계 했다. 이 후 연결요소 알고리즘을 통해 과분할 요소를 제거했다. 따라서, 제안하는 알고리즘은 객체 기반의 깊이 정보 결과를 보여 줄 뿐만 아니라, 벤치마크 방법에 비해 확률 랜드 인덱스, 분할 커버링 측면에서도 각각 벤치마크 방법에 비해 0.017, 0.051으로 향상된 결과치를 보여준다.

실시간 LWIR 밴드 영상 처리를 위한 병렬 클러스터링 기술 (Parallel clustering technology for real-time LWIR band image processing)

  • 조용진;이규승;홍성하;오종우;이동훈
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.158-158
    • /
    • 2017
  • 비닐포장 하부에 위치한 콩의 생장 초기에 발생한 초엽을 인식하기 위한 연구를 수행중이다. 선행 연구에서 비닐포장에 접촉한 콩 초엽으로 인해 비닐포장 상부 표면의 열 반응 분포에 변화가 있음을 발견하였다. 현장에서 주행 중에 콩 초엽의 위치를 실시간으로 인식하고 연동된 선형 또는 회전형 엑츄에이터를 제어하여 정확한 위치에 천공을 수행하기 위해서는 계측 시스템과 제어 시스템간의 시간적 차이를 최소할 수 있는 실시간 신호 처리 기술이 필수적이다. 선행 연구에서 사용한 다중 IR 센서의 분해능은 $16{\times}4pixel$이며 주파수는 3 Hz로, 폭이 30cm 내외인 비닐포장 상부의 정밀 분석에 한계가 있음을 발견하였다. 이를 해결하기 위하여 분해능과 계측 주기를 개선할 수 있는 초소형 ($1cm{\times}1cm{\times}1cm$) 열화상 센서를 이용하였다. LWIR(Longwave infrared)영역에 해당하는 $8{\mu}m{\sim}14{\mu}m$의 영역에서 $0.05^{\circ}C$의 분해능을 보이는 $ Lepton^{TM}$ (500-0690-00, FLIR, Goleta, CA)모델을 사용하였다. 프레임당 $80{\times}60$ 픽셀의 정보가 2 Byte의 단위로 계측이 되며 9 Hz의 주파수로 대상면의 열 분포를 측정할 수 있다. 이론적으로 초당 정보 전송량은 86,400 Byte ($80{\times}60{\times}2{\times}9$)이며, 1 m를 진행하는 주행형 천공기에 적용할 경우 1 프레임당 10cm 정도의 면적을 측정하므로, 최대 위치 판정 분해능은 약 10 cm / 60 pixel = 0.17 cm/pixel로 상대적으로 정밀한 위치 판별이 가능하다. $80{\times}60{\times}2Byet$의 정보를 0.1초 이내에 분석해야 하는 기술적 과제를 해결하기 위하여 천공 작업기에 적합한 상용 SBC(Single board computer)의 클럭 속도(1 Ghz)로 처리 가능한 공간 분포 분석 알고리즘을 개발하였다. 전체 이미지 도메인을 한 번에 분석하는데 소요되는 시간을 최소화하기 위하여 공간정보 행렬을 균등히 배분하고 별도의 프로세서에서 Feature를 분석한 후 개별 프로세서의 결과를 경합식으로 판정하는 기술을 연구하였다. 오픈 소스인 MPICH(www.mpich.org) 라이브러리를 이용하여 개발한 신호 분석 프로그램을 클러스터링으로 연동된 개별 코어에 설치/수행 하였다. 2D 행렬인 열분포 정보를 공간적으로 균등 분배하여 개별 코어에서 행렬의 Spatial domain analysis를 수행하였다. $20{\times}20$의 클러스터링 단위를 이용할 경우 총 12개의 코어가 필요하였으며, 초당 10회의 연산이 가능함을 확인하였다. 병렬 클러스터링 기술을 이용하여 1m/s 내외의 주행 속도에 대응이 가능한 비닐포장 상부 열 분포 분석 시스템을 구현하였다.

  • PDF