• Title/Summary/Keyword: Image Calibration

Search Result 803, Processing Time 0.024 seconds

3차원 공간정보 생성을 위한 반자동 카메라 교정 방법 (Semi-Auto Camera Calibration Method for 3D Information Generation)

  • 김형태;백준기
    • 전자공학회논문지
    • /
    • 제52권5호
    • /
    • pp.127-135
    • /
    • 2015
  • 본 논문에서는 사용자의 입력을 포함한 반자동 카메라 교정 방법을 제안한다. 제안된 방법은 사용자가 정의한 기준선을 소실점 추정을 위한 정보로 사용하는 동시에, 추정 과정에서 발생하는 아웃라이어 제거를 위한 추가 제약 조건으로 사용한다. 제안된 카메라 교정 방법은 대수적, 기하학적 방법을 모두 사용하여 기존 방법으로는 불가능한 조건에서 교정이 가능하도록 성능을 확장하였다. 교정 실험 결과를 통해 제안하는 방법이 기존 자동 교정보다 교정 정확도가 높은 것을 확인하였다.

두 보정면과 사교좌표 매핑을 이용한 카메라 보정법 (Camera Calibration with Two Calibration Planes and Oblique Coordinate Mapping)

  • 안정호
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.119-124
    • /
    • 1999
  • A method to find the line of sight ray in space which corresponds to a point in an image plane is presented. The line of sight ray is defined by two points which are the intersections between the two calibration planes and the sight ray. The intersection point is found by the oblique coordinate mapping between the image plane and the calibration plane in the space. The proposed oblique coordinate mapping method has advantages over the transformation matrix method in the required memory space and computation time.

  • PDF

나선형 패턴을 사용한 어안렌즈 영상 교정 및 기하학적 왜곡 보정 (Calibration of Fisheye Lens Images Using a Spiral Pattern and Compensation for Geometric Distortion)

  • 김선영;윤인혜;김동균;백준기
    • 대한전자공학회논문지SP
    • /
    • 제49권4호
    • /
    • pp.16-22
    • /
    • 2012
  • 본 논문에서는 어안렌즈의 교정(calibration)과 기하학적 왜곡을 보정하기 위해서 광학 시뮬레이터에 적합한 나선형 패턴을 제안하고, 이를 이용하여 별도의 수학적 모델링이 필요 없는 교정 알고리듬을 제안한다. 나선형 패턴을 광학 시뮬레이터의 입력 영상으로 이용하여 어안렌즈로 왜곡 시킨 영상에서 기하학적으로 이동된 점들의 정합을 통하여 교정을 수행한다. 이러한 과정에서 나선형 패턴 영상에서 중심으로부터 멀어지는 점들이 어안렌즈의 기하학적 왜곡을 거쳐 이동되는 정보를 왜곡되기 전의 위치와 정합하기 때문에 정확한 교정이 가능한 동시에, 별도의 모델링이 필요 없기 때문에 효율적인 처리가 가능하다. 제안된 기술은 어안렌즈를 이용한 패턴인식 시스템에서 손실 없는 디지털 영상 확대를 통하여 정확한 정보를 추출하는 데에 이용할 수 있다. 또한 넓은 시야각을 필요로 하는 다양한 영상처리 분야에 적용하여 어안렌즈의 교정과 왜곡 보정을 가능하게 한다.

차량용 어안렌즈 카메라 캘리브레이션 및 왜곡 보정 (Camera Calibration and Barrel Undistortion for Fisheye Lens)

  • 허준영;이동욱
    • 전기학회논문지
    • /
    • 제62권9호
    • /
    • pp.1270-1275
    • /
    • 2013
  • A lot of research about camera calibration and lens distortion for wide-angle lens has been made. Especially, calibration for fish-eye lens which has 180 degree FOV(field of view) or above is more tricky, so existing research employed a huge calibration pattern or even 3D pattern. And it is important that calibration parameters (such as distortion coefficients) are suitably initialized to get accurate calibration results. It can be achieved by using manufacturer information or lease-square method for relatively narrow FOV(135, 150 degree) lens. In this paper, without any previous manufacturer information, camera calibration and barrel undistortion for fish-eye lens with over 180 degree FOV are achieved by only using one calibration pattern image. We applied QR decomposition for initialization and Regularization for optimization. With the result of experiment, we verified that our algorithm can achieve camera calibration and image undistortion successfully.

Development of a Camera Self-calibration Method for 10-parameter Mapping Function

  • Park, Sung-Min;Lee, Chang-je;Kong, Dae-Kyeong;Hwang, Kwang-il;Doh, Deog-Hee;Cho, Gyeong-Rae
    • 한국해양공학회지
    • /
    • 제35권3호
    • /
    • pp.183-190
    • /
    • 2021
  • Tomographic particle image velocimetry (PIV) is a widely used method that measures a three-dimensional (3D) flow field by reconstructing camera images into voxel images. In 3D measurements, the setting and calibration of the camera's mapping function significantly impact the obtained results. In this study, a camera self-calibration technique is applied to tomographic PIV to reduce the occurrence of errors arising from such functions. The measured 3D particles are superimposed on the image to create a disparity map. Camera self-calibration is performed by reflecting the error of the disparity map to the center value of the particles. Vortex ring synthetic images are generated and the developed algorithm is applied. The optimal result is obtained by applying self-calibration once when the center error is less than 1 pixel and by applying self-calibration 2-3 times when it was more than 1 pixel; the maximum recovery ratio is 96%. Further self-correlation did not improve the results. The algorithm is evaluated by performing an actual rotational flow experiment, and the optimal result was obtained when self-calibration was applied once, as shown in the virtual image result. Therefore, the developed algorithm is expected to be utilized for the performance improvement of 3D flow measurements.

3차 변환 모델을 이용한 영상 보정 시스템 구현 (Image Calibration System Implementation using Third Transformation Model)

  • 한기태
    • 한국컴퓨터정보학회논문지
    • /
    • 제3권3호
    • /
    • pp.7-15
    • /
    • 1998
  • 본 논문은 렌즈와 여러 요인에 의해 야기되는 왜곡 영상을 본래 영상에 가까운 영상으로 보정하기 위한 방법을 제안한다. 왜곡되지 않은 가정된 표준영상과 왜곡 영상간의 3차 변환 모델링을 통하여 보정 계수를 구한 후 왜곡 영상에 이 계수를 적용하여 원하는 영상을 얻는다. 보정계수는 카메라의 위치나 렌즈 변경등 촬영 환경이 변경될 때까지 유효하다. 본 연구는 보정계수를 구하기 위한 영상처리 과정과 왜곡 영상에 보정계수를 적용하여실 영상으로 간주되는 영상을 만들어내는 보정계수 적용 과정으로 되어 있다. 본 논문에서제안하는 방법은 특정 시스템 환경과 카메라 렌즈의 영향에 의해 부과된 변형된 영상으로부터 실제 영상을 관측하는 시스템에 적용하기 위한 것이며 실험은 원자로에 부착 될 CCD카메라로부터 입력되는 왜곡 영상을 대상으로 하였고 보정 정도가 기존 방법보다 우수함을 보인다.

  • PDF

원형 물체를 이용한 로봇/카메라 자세의 능동보정 (Active Calibration of the Robot/camera Pose using Cylindrical Objects)

  • 한만용;김병화;김국헌;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.314-323
    • /
    • 1999
  • This paper introduces a methodology of active calibration of a camera pose (orientation and position) using the images of cylindrical objects that are going to be manipulated. This active calibration method is different from the passive calibration where a specific pattern needs to be located at a certain position. In the active calibration, a camera attached on the robot captures images of objects that are going to be manipulated. That is, the prespecified position and orientation data of the cylindrical object are transformed into the camera pose through the two consecutive image frames. An ellipse can be extracted from each image frame, which is defined as a circular-feature matrix. Therefore, two circular-feature matrices and motion parameters between the two ellipses are enough for the active calibration process. This active calibration scheme is very effective for the precise control of a mobile/task robot that needs to be calibrated dynamically. To verify the effectiveness of active calibration, fundamental experiments are peformed.

  • PDF

항공기용 디지털 영상에 대한 검정(Calibration) 및 정확도 평가 (Calibration and accuracy evaluation of airborne digital camera images)

  • 이승헌;위광재;이강원;이홍술
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 춘계학술발표회논문집
    • /
    • pp.183-195
    • /
    • 2004
  • Photogrammetry is one of the most important sources of GIS application. Nowadays, color photos are used and camera is integrated with GPS/INS sensors. However the photos are still taken from analogue camera and scanned for digital image. For the convenient and accurate image application especially for 3D, airborne digital camera images is essential. In this paper, digital image calibration process with GPS/INS and its accuracy evaluation was presented.

  • PDF

컴퓨터 시각(視覺)에 의거한 측정기술(測定技術) 및 측정오차(測定誤差)의 분석(分析)과 보정(補正) (Computer Vision Based Measurement, Error Analysis and Calibration)

  • 황헌;이충호
    • Journal of Biosystems Engineering
    • /
    • 제17권1호
    • /
    • pp.65-78
    • /
    • 1992
  • When using a computer vision system for a measurement, the geometrically distorted input image usually restricts the site and size of the measuring window. A geometrically distorted image caused by the image sensing and processing hardware degrades the accuracy of the visual measurement and prohibits the arbitrary selection of the measuring scope. Therefore, an image calibration is inevitable to improve the measuring accuracy. A calibration process is usually done via four steps such as measurement, modeling, parameter estimation, and compensation. In this paper, the efficient error calibration technique of a geometrically distorted input image was developed using a neural network. After calibrating a unit pixel, the distorted image was compensated by training CMLAN(Cerebellar Model Linear Associator Network) without modeling the behavior of any system element. The input/output training pairs for the network was obtained by processing the image of the devised sampled pattern. The generalization property of the network successfully compensates the distortion errors of the untrained arbitrary pixel points on the image space. The error convergence of the trained network with respect to the network control parameters were also presented. The compensated image through the network was then post processed using a simple DDA(Digital Differential Analyzer) to avoid the pixel disconnectivity. The compensation effect was verified using known sized geometric primitives. A way to extract directly a real scaled geometric quantity of the object from the 8-directional chain coding was also devised and coded. Since the developed calibration algorithm does not require any knowledge of modeling system elements and estimating parameters, it can be applied simply to any image processing system. Furthermore, it efficiently enhances the measurement accuracy and allows the arbitrary sizing and locating of the measuring window. The applied and developed algorithms were coded as a menu driven way using MS-C language Ver. 6.0, PC VISION PLUS library functions, and VGA graphic functions.

  • PDF

The calibration of a laser profiling system for seafloor micro-topography measurements

  • Loeffler, Kathryn R.;Chotiros, Nicholas P.
    • Ocean Systems Engineering
    • /
    • 제1권3호
    • /
    • pp.195-205
    • /
    • 2011
  • A method for calibrating a laser profiling system for seafloor micro-topography measurements is described. The system consists of a digital camera and an arrangement of six red lasers that are mounted as a unit on a remotely operated vehicle (ROV). The lasers project as parallel planes onto the seafloor, creating profiles of the local topography that are interpreted from the digital camera image. The goal of the calibration was to determine the plane equations for the six lasers relative to the camera. This was accomplished in two stages. First, distortions in the digital image were corrected using an interpolation method based on a virtual pinhole camera model. Then, the laser planes were determined according to their intersections with a calibration target. The position and orientation of the target were obtained by a registration process. The selection of the target shape and size was found to be critical to a successful calibration at sea, due to the limitations in the manoeuvrability of the ROV.