• Title/Summary/Keyword: Image Board

Search Result 581, Processing Time 0.028 seconds

Automatic Focus Control for Assembly Alignment in a Lens Module Process (렌즈 모듈 생산 공정에서 조립 정렬을 위한 자동 초점 제어)

  • Kim, Hyung-Tae;Kang, Sung-Bok;Kang, Heui-Seok;Cho, Young-Joon;Park, Nam-Gue;Kim, Jin-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.70-77
    • /
    • 2010
  • This study proposed an auto focusing method for a multi-focus image in assembling lens modules in digital camera phones. A camera module in a camera phone is composed of a lens barrel, an IR glass, a lens mount, a PCB board and aspheric lenses. Alignment among the components is one of the important factors in product quality. Auto-focus is essential to adjust image quality of an IR glass in a lens holder, but there are two focal points in the captured image due to thickness of IR glass. So, sharpness, probability and a scale factor are defined to find desired focus from a multi-focus image. The sharpness is defined as clarity of an image. Probability and a scale factors are calculated using pattern matching with a registered image. The presented algorithm was applied to a lens assembly machine which has 5 axes, two vacuum chucks and an inspection system. The desired focus can be determined on the local maximum of the sharpness, the probability and the scale factor in the experiment.

Development of Identification Method of Rice Varieties Using Image Processing Technique (화상처리법에 의한 쌀 품종별 판별기술 개발)

  • Kwon, Young-Kil;Cho, Rae-Kwang
    • Applied Biological Chemistry
    • /
    • v.41 no.2
    • /
    • pp.160-165
    • /
    • 1998
  • Current discriminating technique of rice variety is known to be not objective till this time because of depending on naked eye of well trained inspector. DNA finger print method based on genetic character of rice has been indicated inappropriate for on-site application, because the method need much labor and skilled expert. The purpose of this study was to develops the identification technique of polished rice varieties using CCD camera images. To minimize the noise of the captured image, thresholding and median filtering were carried out, and edge was extracted from the image data. Image data after pretreatment of normalize and FFT(fast fourier transform) were used for library model and feedforward backpropagation neural network model. Image processing technique using CCD camera could discriminate the variety of rice with high accuracy in case of quite different rice of shape, but the accuracy was reached at 85% in the similar shape of rice.

  • PDF

Real-time Detection Technique of the Target in a Berth for Automatic Ship Berthing (선박 자동접안을 위한 정박지 목표물의 실시간 검출법)

  • Choi, Yong-Woon;;Kim, Young-Bok;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.431-437
    • /
    • 2006
  • In this paper vector code correlation(VCC) method and an algorithm to promote the image-processing performance in building an effective measurement system using cameras are described far automatically berthing and controlling the ship equipped with side-thrusters. In order to realize automatic ship berthing, it is indispensable that the berthing assistant system on the ship should continuously trace a target in the berth to measure the distance to the target and the ship attitude, such that we can make the ship move to the specified location. The considered system is made up of 4 apparatuses compounded from a CCD camera, a camera direction controller, a popular PC with a built-in image processing board and a signal conversion unit connected to parallel port of the PC. The object of this paper is to reduce the image-processing time so that the berthing system is able to ensure the safety schedule against risks during approaching to the berth. It could be achieved by composing the vector code image to utilize the gradient of an approximated plane found with the brightness of pixels forming a certain region in an image and verifying the effectiveness on a commonly used PC. From experimental results, it is clear that the proposed method can be applied to the measurement system for automatic ship berthing and has the image-processing time of fourfold as compared with the typical template matching method.

Development of an Imaging Processing System for Automation of a Callus Inoculation (식물조직배양 자동화를 위한 영상처리장치 개발)

  • Chung, Suk-Hyun;No, Dae-Hyun;Song, Jae-Kwan
    • Journal of Bio-Environment Control
    • /
    • v.18 no.2
    • /
    • pp.95-100
    • /
    • 2009
  • This study was conducted to develop an imaging processing system of inoculation processing of a lily callus. The image processing system was composed of a camera, a image processing board, and etc. And the illuminance always decided by setting up 55W/3 wavelength lamp respectively on all aspects and the side was maintained by the lighting part. The image characteristic was examined according to each frame of RGB,therefore the culture vessel was able to be separated with B frame. The required time was 2.2 seconds in one cycle from the image acquisition to obtaining the result. The recognition rate of the container was 100%, and the result of image processing showed that the recognition success rate of lily callus was 93%.

Real-Time Hardware Design of Image Quality Enhancement Algorithm using Multiple Exposure Images (다중 노출 영상을 이용한 영상의 화질 개선 알고리즘의 실시간 하드웨어 설계)

  • Lee, Seungmin;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1462-1467
    • /
    • 2018
  • A number of algorithms for improving the image quality of low light images have been studied using a single image or multiple exposure images. The low light image is low in contrast and has a large amount of noise, which limits the identification of information of the subject. This paper proposes the hardware design of algorithms that improve the quality of low light image using 2 multiple exposure images taken with a dual camera. The proposed hardware structure is designed in real time processing in a way that does not use frame memory and line memory using transfer function. The proposed hardware design has been designed using Verilog and validated in Modelsim. Finally, when the proposed algorithm is implemented on FPGA using xc7z045-2ffg900 as the target board, the maximum operating frequency is 167.617MHz. When the image size is 1920x1080, the total clock cycle time is 2,076,601 and can be processed in real time at 80.7fps.

Development of a Practical Surface Image Velocimeter using Spatio-Temporal Images (시공간영상을 이용한 실용적인 표면영상유속계 개발)

  • Yunho Lee;Kwonkyu Yu
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.208-216
    • /
    • 2023
  • The purpose of this study is to present the most appropriate hardware and software configurations to produce a practical SIV (surface image velocimeter). To make a practical SIV, we constructed the system with a CCTV, a water stage gauge, and an analysis software installed on an Android board. The camera captures continuously images for 30 seconds with 2 minute intervals. And the 11-parameter projection method was used in the software that analyzes the captured images to reconstruct the exact measurement points according to the changing water stage. In addition, a spatio-temporal image construction method was developed so that the directions of the images could be arranged in the main flow direction at each measurement point. The surface image velocimeter composed of the proposed method was produced and installed at the Insu Stream, Seoul for a test site. And a result of measurement during a heavy rainfall event showed that the proposed system can measure flow discharge in proper, rapid and continuous manner.

Evaluation of Geometric Correspondence of kV X-ray Images, Electric Portal Images and Digitally Reconstructed Radiographic Images (kV X선 영상, 전자조사문 영상, 디지털화재구성 영상 간 기하학적 일치성 평가)

  • Cheong, Kwang-Ho;Kim, Kyoung-Joo;Cho, Byung-Chul;Kang, Sei-Kwon;Juh, Ra-Hyeong;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.118-125
    • /
    • 2007
  • In this study we estimated a geometric correlation among digitally reconstructed radiographic image (DRRI), kV x-ray image (kVXI) from the On-Board Imager (OBI) and electric portal image (EPI). To verify geometric correspondence of DRRI, kVXI and EPI, specially designed phantom with indexed 6 ball bearings (BBs) were employed. After accurate setup of the phantom on a treatment couch using orthogonal EPIs, we acquired set of orthogonal kVXIs and EPIs then compared the absolute positions of the center of the BBs calculated at each phantom plane for kVXI and EPI respectively. We also checked matching result for obliquely incident beam (gantry angle of $315^{\circ}$) after 2D-2D matching provided by OBI application. A reference EPI obtained after initial setup of the phantom was compared with 10 series of EPIs acquired after each 2D-2D matching. Imaginary setup errors were generated from -5 mm to 5 mm at each couch motion direction. Calculated positions of all center positions of the BBs at three different images were agreed with the actual points within a millimeter and each other. Calculated center positions of the BBs from the reference and obtained EPIs after 2D-2D matching agreed within a millimeter. We could tentatively conclude that the OBI system was mechanically quite reliable for image guided radiation therapy (IGRT) purpose.

  • PDF

Optical Lining Device Development of PDP and FED Vacuum Binding (PDP, FED의 진공접합용 광학정렬장치 개발)

  • Lee, Jeung Young;Kim, Dae Nyoun;Kim, Kyung Chan
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.123-128
    • /
    • 2002
  • This study is to develop optical lining device for vacuum binding of PDP and FED. It is very difficult precise technology to line a front board and back board accurately and fast every time when two boards are joined together. Especially, these technology is difficult to be transferred from developed countries. In this study, the accuracy of lining of two boards in vacuum device by developing an optical lining device for vacuum binding as an image processor and CCD camera configured to be high magnification lens with long focus using optical design.

  • PDF

Fluid Flow and Temperature Distribution Around a Surface-Mounted Module Cooled by Forced Air Flow in a Portable Personal Computers (휴대용 컴퓨터 내에 실장된 강제공랭 모듈 주위의 유체유동과 온도분포)

  • Park,Sang-Hee;Shin, Dae-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.238-246
    • /
    • 2004
  • This paper reports an experimental study around a module about forced air flow by blower (35${\times}$35${\times}$6㎣) in a portable personal computer model(200${\times}$235${\times}$10㎣). Experimental report is to know three data to investigate thermal resistance, adiabatic wall temperature and visualized fluid flow around the module by combination of the moving number and the arrangement method of blower. The channel inlet flow velocity has been varied between 0.26, 0.52 and 0.78㎧, and input power ( $Q_{p}$) to the module is 4W. To investigate thermal resistance. the heated module is mounted on two boards(110${\times}$110${\times}$1.2㎣, k=20.73, 0.494W/ $m^{\circ}C$) in parallel-plate channel to forced air flow. The temperature distribution were visualized by heated module on acrylic board(k=0.262W/ $m^{\circ}C$) using liquid crystal film. Fluid flow around the module were visualized using particle image velocimetry system.

FPCB-based Birdcage-Type Receiving Coil Sensor for Small Animal 1H 1.5 T Magnetic Resonance Imaging System (소 동물 1H 1.5 T 자기공명영상 장치용 유연인쇄기판 기반 새장형 수신 코일 센서)

  • Ahmad, Sheikh Faisal;Kim, Hyun Deok
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.245-250
    • /
    • 2017
  • A novel method to implement a birdcage-type receiving coil sensor for use in a magnetic resonance imaging(MRI) system has been demonstrated employing a flexible printed circuit board (FPCB) fabrication technique. Unlike the conventional methods, the two-dimensional shape of the coil sensor is first implemented as a FPCB and then it is attached to the surface of a cylindrical supporting structure to implement the three-dimensional birdcage-type coil sensor. The proposed method is very effective to implement object-specific MRI coil sensors especially for small animal measurements in research and preclinical applications since the existing well-developed FPCB-based techniques can easily meet the requirements on accuracies and costs during coil implement process. The performances of the coil sensor verified through $^1H$ 1.5T MRI measurements for small animals and it showed excellent characteristics by providing a high spatial precision and a high signal-to-noise ratio.